Publications by authors named "Stephan Hofmann"

Article Synopsis
  • Scientists are trying to understand how brain cells (neurons) work by looking at their activity and tiny changes at the connections called synapses.
  • They use special tools called graphene microelectrode arrays (G-MEAs) that can both record brain activity and take detailed pictures of the connections.
  • They also created a computer program that helps analyze the data, showing that a disease treatment causes changes in the size of synapse connections, which affects how well the neurons can communicate with each other.
View Article and Find Full Text PDF

Magnesium is a recent addition to the plasmonic toolbox: nanomaterials that efficiently utilize photons' energy due to their ability to sustain localized surface plasmon resonances. Magnesium nanoparticles protected by a native oxide shell can efficiently absorb light across the solar spectrum, making them a promising photocatalytic material. However, their inherent reactivity toward oxidation may limit the number of reactions in which Mg-MgO can be used.

View Article and Find Full Text PDF

Solar fuels offer a promising approach to provide sustainable fuels by harnessing sunlight. Following a decade of advancement, CuO photocathodes are capable of delivering a performance comparable to that of photoelectrodes with established photovoltaic materials. However, considerable bulk charge carrier recombination that is poorly understood still limits further advances in performance.

View Article and Find Full Text PDF

In two-dimensional semiconductors, cooperative and correlated interactions determine the material's excitonic properties and can even lead to the creation of correlated states of matter. Here, we study the fundamental two-particle correlated exciton state formed by the Coulomb interaction between single-particle holes and electrons. We find that the ultrafast transfer of an exciton's hole across a type II band-aligned semiconductor heterostructure leads to an unexpected sub-200-femtosecond upshift of the single-particle energy of the electron being photoemitted from the two-particle exciton state.

View Article and Find Full Text PDF

In this paper, we determine the magnetic moment induced in graphene when grown on a cobalt film using polarised neutron reflectivity (PNR). A magnetic signal in the graphene was detected by X-ray magnetic circular dichroism (XMCD) spectra at the C -edge. From the XMCD sum rules an estimated magnetic moment of 0.

View Article and Find Full Text PDF

In recent years, halide perovskite materials have been used to make high-performance solar cells and light-emitting devices. However, material defects still limit device performance and stability. Here, synchrotron-based Bragg coherent diffraction imaging is used to visualize nanoscale strain fields, such as those local to defects, in halide perovskite microcrystals.

View Article and Find Full Text PDF

Identification of non-amplified DNA sequences and single-base mutations is essential for molecular biology and genetic diagnostics. This paper reports a novel sensor consisting of electrochemically-gated graphene coplanar waveguides coupled with a microfluidic channel. Upon exposure to analytes, propagation of electromagnetic waves in the waveguides is modified as a result of interactions with the fringing field and modulation of graphene dynamic conductivity resulting from electrostatic gating.

View Article and Find Full Text PDF

In decentralized systems, adsorption-based strategies offer inherent advantages for the treatment of drinking water contaminated with oxoanion. However, these strategies only involve phase transfer and not the transformation to an innocuous state. The requirement for an after-treatment procedure to manage the hazardous adsorbent further complicates the process.

View Article and Find Full Text PDF

Twisted bilayer graphene provides an ideal solid-state model to explore correlated material properties and opportunities for a variety of optoelectronic applications, but reliable, fast characterization of the twist angle remains a challenge. Here we introduce spectroscopic ellipsometric contrast microscopy (SECM) as a tool for mapping twist angle disorder in optically resonant twisted bilayer graphene. We optimize the ellipsometric angles to enhance the image contrast based on measured and calculated reflection coefficients of incident light.

View Article and Find Full Text PDF

We report the magnitude of the induced magnetic moment in CVD-grown epitaxial and rotated-domain graphene in proximity with a ferromagnetic Ni film, using polarized neutron reflectivity (PNR) and X-ray magnetic circular dichroism (XMCD). The XMCD spectra at the C -edge confirm the presence of a magnetic signal in the graphene layer, and the sum rules give a magnetic moment of up to ∼0.47 μ/C atom induced in the graphene layer.

View Article and Find Full Text PDF

Reliable, clean transfer and interfacing of 2D material layers are technologically as important as their growth. Bringing both together remains a challenge due to the vast, interconnected parameter space. We introduce a fast-screening descriptor approach to demonstrate holistic data-driven optimization across the entirety of process steps for the graphene-Cu model system.

View Article and Find Full Text PDF

2D materials offer the ability to expose their electronic structure to manipulations by a proximity effect. This could be harnessed to craft properties of 2D interfaces and van der Waals heterostructures in devices and quantum materials. We explore the possibility to create an artificial spin polarized electrode from graphene through proximity interaction with a ferromagnetic insulator to be used in a magnetic tunnel junction (MTJ).

View Article and Find Full Text PDF

We present a high-throughput method for identifying and characterizing individual nanowires and for automatically designing electrode patterns with high alignment accuracy. Central to our method is an optimized machine-readable, lithographically processable, and multi-scale fiducial marker system─dubbed LithoTag─which provides nanostructure position determination at the nanometer scale. A grid of uniquely defined LithoTag markers patterned across a substrate enables image alignment and mapping in 100% of a set of >9000 scanning electron microscopy (SEM) images (>7 gigapixels).

View Article and Find Full Text PDF

Moiré superlattices in atomically thin van der Waals heterostructures hold great promise for extended control of electronic and valleytronic lifetimes, the confinement of excitons in artificial moiré lattices and the formation of exotic quantum phases. Such moiré-induced emergent phenomena are particularly strong for interlayer excitons, where the hole and the electron are localized in different layers of the heterostructure. To exploit the full potential of correlated moiré and exciton physics, a thorough understanding of the ultrafast interlayer exciton formation process and the real-space wavefunction confinement is indispensable.

View Article and Find Full Text PDF

Remote epitaxy is an emerging materials synthesis technique which employs a 2D interface layer, often graphene, to enable the epitaxial deposition of low defect single crystal films while restricting bonding between the growth layer and the underlying substrate. This allows for the subsequent release of the epitaxial film for integration with other systems and reuse of growth substrates. This approach is applicable to material systems with an ionic component to their bonding, making it notably appealing for III-V alloys, which are a technologically important family of materials.

View Article and Find Full Text PDF

This paper describes a simple model for comparing the degree of electronic coupling between molecules and electrodes across different large-area molecular junctions. The resulting coupling parameter can be obtained directly from current-voltage data or extracted from published data without fitting. We demonstrate the generalizability of this model by comparing over 40 different junctions comprising different molecules and measured by different laboratories.

View Article and Find Full Text PDF

Magnetic field-driven insulating states in graphene are associated with samples of very high quality. Here, this state is shown to exist in monolayer graphene grown by chemical vapor deposition (CVD) and wet transferred on AlO without encapsulation with hexagonal boron nitride (-BN) or other specialized fabrication techniques associated with superior devices. Two-terminal measurements are performed at low temperature using a GaAs-based multiplexer.

View Article and Find Full Text PDF

Metamaterial photonic integrated circuits with arrays of hybrid graphene-superconductor coupled split-ring resonators (SRR) capable of modulating and slowing down terahertz (THz) light are introduced and proposed. The hybrid device's optical responses, such as electromagnetic-induced transparency (EIT) and group delay, can be modulated in several ways. First, it is modulated electrically by changing the conductivity and carrier concentrations in graphene.

View Article and Find Full Text PDF

The gas sensor market is growing fast, driven by many socioeconomic and industrial factors. Mid-infrared (MIR) gas sensors offer excellent performance for an increasing number of sensing applications in healthcare, smart homes, and the automotive sector. Having access to low-cost, miniaturized, energy efficient light sources is of critical importance for the monolithic integration of MIR sensors.

View Article and Find Full Text PDF

Iridium and ruthenium and their oxides/hydroxides are the best candidates for the oxygen evolution reaction under harsh acidic conditions owing to the low overpotentials observed for Ru- and Ir-based anodes and the high corrosion resistance of Ir-oxides. Herein, by means of cutting edge surface and bulk sensitive X-ray spectroscopy techniques, specifically designed electrode nanofabrication and DFT calculations, we were able to reveal the electronic structure of the active IrO centers (i.e.

View Article and Find Full Text PDF

The inherently low photoluminescence (PL) yields in the as prepared transition metal dichalcogenide (TMD) monolayers are broadly accepted to be the result of atomic vacancies (, defects) and uncontrolled doping, which give rise to non-radiative exciton decay pathways. To date, a number of chemical passivation schemes have been successfully developed to improve PL in sulphur based TMDs , molybdenum disulphide (MoS) and tungsten disulphide (WS) monolayers. Studies on solution based chemical passivation schemes for improving PL yields in selenium (Se) based TMDs are however lacking in comparison.

View Article and Find Full Text PDF

Hexagonal boron nitride (hBN) is a promising host material for room-temperature, tunable solid-state quantum emitters. A key technological challenge is deterministic and scalable spatial emitter localization, both laterally and vertically, while maintaining the full advantages of the 2D nature of the material. Here, we demonstrate emitter localization in hBN in all three dimensions a monolayer (ML) engineering approach.

View Article and Find Full Text PDF
Article Synopsis
  • Conventional top-down lithography struggles to reliably create devices at atomic scales, while bottom-up methods allow for the production of identical molecules and nanoparticles that can self-assemble on surfaces.
  • A new scalable method has been developed to connect a self-assembled monolayer of nanoparticles with a layer of graphene, facilitating the integration of these nanoscale objects into electronic circuits.
  • This technique achieves a high yield of single-electron effects with significant potential applications in electronics, such as memory, switches, sensors, and thermoelectric generators.
View Article and Find Full Text PDF