Publications by authors named "Stephan Gruber"

Multisubunit protein complexes are central to many cellular processes, and studying their activities and structures in vitro requires reconstitution via recombinant expression and purification. Obtaining targets at sufficient purity and scale typically involves screening several protein variants and expression hosts. Existing cloning strategies enable co-expression but are often time-consuming, labor-intensive, and host-specific, or involve error-prone steps.

View Article and Find Full Text PDF

The ParABS system plays a critical role in bacterial chromosome segregation. The key component of this system, ParB, loads and spreads along DNA to form a local protein-DNA condensate known as a partition complex. As bacterial chromosomes are heavily supercoiled due to the continuous action of RNA polymerases, topoisomerases and nucleoid-associated proteins, it is important to study the impact of DNA supercoiling on the ParB-DNA partition complex formation.

View Article and Find Full Text PDF

Introduction: With the application of high-resolution 3D 7 Tesla Magnetic Resonance Spectroscopy Imaging (MRSI) in high-grade gliomas, we previously identified intratumoral metabolic heterogeneities. In this study, we evaluated the potential of 3D 7 T-MRSI for the preoperative noninvasive classification of glioma grade and isocitrate dehydrogenase (IDH) status. We demonstrated that IDH mutation and glioma grade are detectable by ultra-high field (UHF) MRI.

View Article and Find Full Text PDF

Bacterial chromosomes are folded into tightly regulated three-dimensional structures to ensure proper transcription, replication, and segregation of the genetic information. Direct visualization of chromosomal shape within bacterial cells is hampered by cell-wall confinement and the optical diffraction limit. Here, we combine cell-shape manipulation strategies, high-resolution fluorescence microscopy techniques, and genetic engineering to visualize the shape of unconfined bacterial chromosome in real-time in live Bacillus subtilis cells that are expanded in volume.

View Article and Find Full Text PDF

Several vaccines targeting bacterial pathogens show reduced efficacy upon concurrent viral infection, indicating that a new vaccinology approach is required. To identify antigens for the human pathogen Streptococcus pneumoniae that are effective following influenza infection, we performed CRISPRi-seq in a murine model of superinfection and identified the conserved lafB gene as crucial for virulence. We show that LafB is a membrane-associated, intracellular protein that catalyzes the formation of galactosyl-glucosyl-diacylglycerol, a glycolipid important for cell wall homeostasis.

View Article and Find Full Text PDF

DNA loop-extruding SMC complexes play crucial roles in chromosome folding and DNA immunity. Prokaryotic SMC Wadjet (JET) complexes limit the spread of plasmids through DNA cleavage, yet the mechanisms for plasmid recognition are unresolved. We show that artificial DNA circularization renders linear DNA susceptible to JET nuclease cleavage.

View Article and Find Full Text PDF

Bacterial cells require DNA segregation machinery to properly distribute a genome to both daughter cells upon division. The most common system involved in chromosome and plasmid segregation in bacteria is the ParABS system. A core protein of this system - partition protein B (ParB) - regulates chromosome organization and chromosome segregation during the bacterial cell cycle.

View Article and Find Full Text PDF

VirB is a transcriptional activator of virulence in the gram-negative bacterium Shigella flexneri encoded by the large invasion plasmid, pINV. It counteracts the transcriptional silencing by the nucleoid structuring protein, H-NS. Mutations in virB lead to loss of virulence.

View Article and Find Full Text PDF

In most bacteria, chromosome segregation is driven by the ParABS system where the CTPase protein ParB loads at the parS site to trigger the formation of a large partition complex. Here, we present in vitro studies of the partition complex for Bacillus subtilis ParB, using single-molecule fluorescence microscopy and AFM imaging to show that transient ParB-ParB bridges are essential for forming DNA condensates. Molecular Dynamics simulations confirm that condensation occurs abruptly at a critical concentration of ParB and show that multimerization is a prerequisite for forming the partition complex.

View Article and Find Full Text PDF

Objective: Recently, the 7 Tesla (7 T) Epilepsy Task Force published recommendations for 7 T magnetic resonance imaging (MRI) in patients with pharmaco-resistant focal epilepsy in pre-surgical evaluation. The objective of this study was to implement and evaluate this consensus protocol with respect to both its practicability and its diagnostic value/potential lesion delineation surplus effect over 3 T MRI in the pre-surgical work-up of patients with pharmaco-resistant focal onset epilepsy.

Methods: The 7 T MRI protocol consisted of T1-weighted, T2-weighted, high-resolution-coronal T2-weighted, fluid-suppressed, fluid-and-white-matter-suppressed, and susceptibility-weighted imaging, with an overall duration of 50 min.

View Article and Find Full Text PDF

SMC and SMC-like complexes promote chromosome folding and genome maintenance in all domains of life. Recently, they were also recognized as factors in cellular immunity against foreign DNA. In bacteria and archaea, Wadjet and Lamassu are anti-plasmid/phage defence systems, while Smc5/6 and Rad50 complexes play a role in anti-viral immunity in humans.

View Article and Find Full Text PDF

Introduction: Deuterium metabolic imaging (DMI) and quantitative exchange label turnover (QELT) are novel MR spectroscopy techniques for non-invasive imaging of human brain glucose and neurotransmitter metabolism with high clinical potential. Following oral or intravenous administration of non-ionizing [6,6'-H]-glucose, its uptake and synthesis of downstream metabolites can be mapped via direct or indirect detection of deuterium resonances using H MRSI (DMI) and H MRSI (QELT), respectively. The purpose of this study was to compare the dynamics of spatially resolved brain glucose metabolism, i.

View Article and Find Full Text PDF

Introduction: Deuterium metabolic imaging (DMI) and quantitative exchange label turnover (QELT) are novel MR spectroscopy techniques for non-invasive imaging of human brain glucose and neurotransmitter metabolism with high clinical potential. Following oral or intravenous administration of non-ionizing [6,6'- H ]-glucose, its uptake and synthesis of downstream metabolites can be mapped via direct or indirect detection of deuterium resonances using H MRSI (DMI) and H MRSI (QELT), respectively. The purpose of this study was to compare the dynamics of spatially resolved brain glucose metabolism, i.

View Article and Find Full Text PDF

Three distinct structural maintenance of chromosomes (SMC) complexes facilitate chromosome folding and segregation in eukaryotes, presumably by DNA loop extrusion. How SMCs interact with DNA to extrude loops is not well understood. Among the SMC complexes, Smc5/6 has dedicated roles in DNA repair and preventing a buildup of aberrant DNA junctions.

View Article and Find Full Text PDF

Structural maintenance of chromosome (SMC) complexes fold DNA by loop extrusion to support chromosome segregation and genome maintenance. Wadjet systems (JetABCD/MksBEFG/EptABCD) are derivative SMC complexes with roles in bacterial immunity against selfish DNA. Here, we show that JetABCD restricts circular plasmids with an upper size limit of about 100 kb, whereas a linear plasmid evades restriction.

View Article and Find Full Text PDF

Chromosomes readily unlink and segregate to daughter cells during cell division, highlighting a remarkable ability of cells to organize long DNA molecules. SMC complexes promote DNA organization by loop extrusion. In most bacteria, chromosome folding initiates at dedicated start sites marked by the ParB/parS partition complexes.

View Article and Find Full Text PDF
Article Synopsis
  • The ParAB system plays a crucial role in the segregation of chromosomes in prokaryotic cells, with ParB proteins spreading up to 15 kilobases from their loading site on the DNA.
  • Recent research using single-molecule fluorescence imaging reveals that ParB can recruit more ParB proteins from the cellular bulk both in the same region (cis) and from other regions (trans), even overcoming obstacles present along the DNA.
  • Molecular dynamics simulations support these findings, showing that the cooperative recruitment of ParB proteins significantly enhances their ability to effectively cover large genomic distances during the essential process of bacterial chromosome segregation.
View Article and Find Full Text PDF

(1) Background: Recent developments in 7T magnetic resonance spectroscopic imaging (MRSI) made the acquisition of high-resolution metabolic images in clinically feasible measurement times possible. The amino acids glutamine (Gln) and glycine (Gly) were identified as potential neuro-oncological markers of importance. For the first time, we compared 7T MRSI to amino acid PET in a cohort of glioma patients.

View Article and Find Full Text PDF

Structural Maintenance of Chromosomes (SMC) complexes play essential roles in genome organization across all domains of life. To determine how the activities of these large (≈50 nm) complexes are controlled by ATP binding and hydrolysis, we developed a molecular dynamics model that accounts for conformational motions of the SMC and DNA. The model combines DNA loop capture with an ATP-induced 'power stroke' to translocate the SMC complex along DNA.

View Article and Find Full Text PDF

Background MR spectroscopic imaging (MRSI) allows in vivo assessment of brain metabolism and is of special interest in multiple sclerosis (MS), where morphologic MRI cannot depict major parts of disease activity. Purpose To evaluate the ability of 7.0-T MRSI to depict and visualize pathologic alterations in the normal-appearing white matter (NAWM) and cortical gray matter (CGM) in participants with MS and to investigate their relation to disability.

View Article and Find Full Text PDF