Despite a well-documented pattern of semantic impairment, the patterns of brain activation during semantic processing in semantic variant primary progressive aphasia (svPPA) still remain poorly understood. In the current study, one svPPA patient (EC) and six elderly controls carried out a general-level semantic categorization task while their brain activity was recorded using magnetoencephalography (MEG). Despite similar behavioral performance, EC showed hyperactivation of the left inferior temporal gyrus (ITG) and right anterior temporal lobe (ATL) relative to controls.
View Article and Find Full Text PDFObjective: Semantic memory impairment has been documented in individuals with amnestic Mild cognitive impairment (aMCI), who are at risk of developing Alzheimer's disease (AD), yet little is known about the neural basis of this breakdown. The aim of this study was to investigate the brain mechanisms associated with semantic performance in aMCI patients.
Method: A group of aMCI patients and a group of healthy controls carried out a semantic categorization task while their brain activity was recorded using magnetoencephalography (MEG).
Semantic memory recruits an extensive neural network including the left inferior prefrontal cortex (IPC) and the left temporoparietal region, which are involved in semantic control processes, as well as the anterior temporal lobe region (ATL) which is considered to be involved in processing semantic information at a central level. However, little is known about the underlying neuronal integrity of the semantic network in normal aging. Young and older healthy adults carried out a semantic judgment task while their cortical activity was recorded using magnetoencephalography (MEG).
View Article and Find Full Text PDFWhen the frequency of one harmonic, in a sound composed of many harmonics, is briefly mistuned and then returned to the 'in-tune' frequency and phase, observers report hearing this harmonic as a separate tone long after the brief period of mistuning - a phenomenon called harmonic enhancement. Here, we examined the consequence of harmonic enhancement on listeners' ability to detect a brief amplitude notch embedded in one of the harmonics after the period of mistuning. When present, the notch was either on the enhanced harmonic or on a different harmonic.
View Article and Find Full Text PDFWe used magnetoencephalography (MEG) to examine brain activity related to the maintenance of non-verbal pitch information in auditory short-term memory (ASTM). We focused on brain activity that increased with the number of items effectively held in memory by the participants during the retention interval of an auditory memory task. We used very simple acoustic materials (i.
View Article and Find Full Text PDFWe examined the electrophysiological correlates of retention in auditory short-term memory (ASTM) for sequences of one, two, or three tones differing in timbre but having the same pitch. We focused on event-related potentials (ERPs) during the retention interval and revealed a sustained fronto-central ERP component (most likely a sustained anterior negativity; SAN) that became more negative as memory load increased. Our results are consistent with recent ERP studies on the retention of pitch and suggest that the SAN reflects brain activity mediating the low-level retention of basic acoustic features in ASTM.
View Article and Find Full Text PDFWe compared the electrophysiological correlates for the maintenance of non-musical tones sequences in auditory short-term memory (ASTM) to those for the short-term maintenance of sequences of coloured disks held in visual short-term memory (VSTM). The visual stimuli yielded a sustained posterior contralateral negativity (SPCN), suggesting that the maintenance of sequences of coloured stimuli engaged structures similar to those involved in the maintenance of simultaneous visual displays. On the other hand, maintenance of acoustic sequences produced a sustained negativity at fronto-central sites.
View Article and Find Full Text PDFWe used magnetoencephalography (MEG) to localize brain activity related to the retention of tones differing in pitch. Participants retained one or two simultaneously presented tones. After a two second interval a test tone was presented and the task was to determine if that tone was in memory.
View Article and Find Full Text PDFWe studied the neuronal mechanisms that implement acoustic short-term memory (ASTM) for pitch using event-related potentials (ERP). Experiment 1 isolated an ERP component, the sustained anterior negativity (SAN), that increased in amplitude with increasing memory load in ASTM using stimuli with equal duration at all memory loads. The SAN load effect found in Experiment 1, when pitch had to be remembered to perform the task, was absent in Experiment 2 using the same sounds when memory was not required.
View Article and Find Full Text PDFPrevious functional neuroimaging studies have shown that maintenance of centrally presented objects in visual short-term memory (VSTM) leads to bilateral increases of BOLD activations in IPS/IOS cortex, while prior electrophysiological work suggests that maintaining stimuli encoded from a single hemifield leads to a sustained posterior contralateral negativity (SPCN) in electrophysiology and magnetoencephalography. These two findings have never been investigated using the same physiological measures. We recorded the BOLD response using fMRI, magnetoencephalography (MEG), and electrophysiology (EEG), while subjects encoded visual stimuli from a single hemifield of a balanced display.
View Article and Find Full Text PDFAcoustic short-term memory (ASTM) refers to the temporary retention of acoustic information. In the present study, we investigated the neural correlates of ASTM for pitch using magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI). Both MEG and fMRI analyses revealed brain activations that varied with memory load in the vicinity of secondary auditory cortex (Brodmann's area, BA22) and superior parietal cortex (BA5/7), while analyses specific to MEG data revealed load-related activations in the frontal cortex (BA9/10).
View Article and Find Full Text PDFA component of the event-related magnetic field (ERMF) response was observed in magnetoencephalographic signals recorded during the maintenance of information in visual short-term memory (VSTM). This sustained posterior contralateral magnetic (SPCM) field is likely the magnetic equivalent of the sustained posterior contralateral negativity (SPCN) found in electrophysiology. Magnetoencephalography data showed, at the sensor level, a bilateral activation over the parietal cortex that increased in amplitude for higher memory load.
View Article and Find Full Text PDFWe used whole-head magnetoencephalography to study the representation of objects in visual short-term memory (VSTM) in the human brain. Subjects remembered the location and color of either two or four colored disks that were encoded from the left or right visual field (equal number of distractors in the other visual hemifield). The data were analyzed using time-frequency methods, which enabled us to discover a strong oscillatory activity in the 8-15 Hz band during the retention interval.
View Article and Find Full Text PDFObjectives: Previous functional magnetic resonance imaging (fMRI) studies have reported abnormal brain activation in individuals with schizophrenia during performance of motor inhibition tasks. We aimed to clarify brain functional abnormalities related to motor response inhibition in schizophrenia by using event-related fMRI in combination with a Go-NoGo task designed to control for non-inhibitory cognitive processes involved in task performance.
Method: We studied 21 schizophrenic patients and 21 healthy subjects, group-matched for age, sex, and performance accuracy on a Go-NoGo task during event-related fMRI.
There has recently been a growing interest in the use of simultaneous electroencephalography (EEG) and functional MRI (fMRI) for evoked activity in cognitive paradigms, thereby obtaining functional datasets with both high spatial and temporal resolution. The simultaneous recording permits obtaining event-related potentials (ERPs) and MR images in the same environment, conditions of stimulation, and subject state; it also enables tracing the joint fluctuations of EEG and fMRI signals. The goal of this study was to investigate the possibility of tracking the trial-to-trial changes in event-related EEG activity, and of using this information as a parameter in fMRI analysis.
View Article and Find Full Text PDFThe superior temporal sulcus (STs) is the main sulcal landmark of the external temporal cortex and is very important for functional (posterior language areas on the left) mapping and surgery. The methodology we use is based on the extraction of the 3D shape of sulci and their separation into subunits called sulcal roots. Seventeen normal brains (male: 11, female: 6, age: 22-60) were systematically analyzed.
View Article and Find Full Text PDF