Purpose: To investigate how a clinical MRI system can be operated without an RF cabin. Receive interference cancellation via signal processing and active transmit emission suppression are evaluated for mitigating image artifacts and achieving electromagnetic compatibility.
Methods: A clinical whole-body MR scanner with B = 0.
Today's health care environment is shifting rapidly, driven by demographic change and high economic pressures on the system. Furthermore, modern precision medicine requires highly accurate and specific disease diagnostics in a short amount of time. Future imaging technology must adapt to these challenges.
View Article and Find Full Text PDFIntroduction: Bacterial vaginosis (BV) is the most common vaginal disorder in reproductive-age women. The condition is characterised by the replacement of a healthy, lactobacilli-dominated vaginal microbiota by anaerobic and facultative anaerobic bacteria. BV increases the risk of acquisition of STIs and is associated with pregnancy complications.
View Article and Find Full Text PDFA 64-channel brain array coil was developed and compared to a 32-channel array constructed with the same coil former geometry to precisely isolate the benefit of the 2-fold increase in array coil elements. The constructed coils were developed for a standard clinical 3T MRI scanner and used a contoured head-shaped curved former around the occipital pole and tapered in at the neck to both improve sensitivity and patient comfort. Additionally, the design is a compact, split-former design intended for robust daily use.
View Article and Find Full Text PDF