Today, more than 70 carbon pricing schemes have been implemented around the globe, but their contributions to emissions reductions remains a subject of heated debate in science and policy. Here we assess the effectiveness of carbon pricing in reducing emissions using a rigorous, machine-learning assisted systematic review and meta-analysis. Based on 483 effect sizes extracted from 80 causal ex-post evaluations across 21 carbon pricing schemes, we find that introducing a carbon price has yielded immediate and substantial emission reductions for at least 17 of these policies, despite the low level of prices in most instances.
View Article and Find Full Text PDFUsing a sample of 70,399 published p-values from 192 meta-analyses, we empirically estimate the counterfactual distribution of p-values in the absence of any biases. Comparing observed p-values with counterfactually expected p-values allows us to estimate how many p-values are published as being statistically significant when they should have been published as non-significant. We estimate the extent of selectively reported p-values to range between 57.
View Article and Find Full Text PDFPublication selection bias undermines the systematic accumulation of evidence. To assess the extent of this problem, we survey over 68,000 meta-analyses containing over 700,000 effect size estimates from medicine (67,386/597,699), environmental sciences (199/12,707), psychology (605/23,563), and economics (327/91,421). Our results indicate that meta-analyses in economics are the most severely contaminated by publication selection bias, closely followed by meta-analyses in environmental sciences and psychology, whereas meta-analyses in medicine are contaminated the least.
View Article and Find Full Text PDFThe p-curve, the distribution of statistically significant p-values of published studies, has been used to make inferences on the proportion of true effects and on the presence of p-hacking in the published literature. We analyze the p-curve for observational research in the presence of p-hacking. We show by means of simulations that even with minimal omitted-variable bias (e.
View Article and Find Full Text PDF