Semiconducting two-dimensional (2D) materials have potential applications as ultrathin optoelectronic materials. Therefore, being able to precisely modulate the band gap is useful to improving their applicability. Electron doping of the semiconducting materials is one of the successful techniques used to modulate their band gap.
View Article and Find Full Text PDFA method for the molecular mapping of formalin-fixed, paraffin-embedded human hippocampal tissue affected by Alzheimer's disease (AD) is presented. This approach utilizes imaging mass spectrometry (IMS) with matrix-assisted laser desorption/ionization (MALDI). The usefulness of this technique in comparing diseased nor mal tissue at the molecular level while continuing to maintain topological and morphological integrity is evident in the preliminary findings.
View Article and Find Full Text PDFRecent advances in cluster synthesis make it possible to produce an enormous variety molecule-like MPCs of size, composition, shape, and surface-chemical combinations. In contrast to the significant growth in the synthetic capability to generate these materials, progress in establishing the physicochemical basis for their observed properties has remained limited. The main reason for this has been the lack of the analytical capability to generate and measure samples of suitably high (molecular) purity; such capability is also essential to support therapeutic and diagnostic MPC development.
View Article and Find Full Text PDFIn some respects, large noble-metal clusters protected by thiolate ligands behave as giant molecules of definite composition and structure; however, their rigorous analysis continues to be quite challenging. Analysis of complex mixtures of intact monolayer-protected clusters (MPCs) by liquid chromatography mass spectrometry (LC-MS) could provide quantitative identification of the various components present. This advance is critical for biomedical and toxicological research, as well as in fundamental studies that rely on the identification of selected compositions.
View Article and Find Full Text PDFA method for the analysis of amyloid-beta peptides in isolated plaques and intact tissue sections affected by Alzheimer's disease (AD) is presented. This method employs matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry and the inherent laser-induced in-source decay (ISD) that occurs coupled with imaging mass spectrometry (IMS) to investigate the composition of these samples eliminating the need for other confirmational MS/MS techniques. These results demonstrate this technique's usefulness for the identification of amyloid-beta peptides in tissue and isolated senile plaques from AD patients using the reproducible fragmentation pattern demonstrated via the laser-induced ISD of synthetic amyloid-beta peptide clips (1-40, 1-42).
View Article and Find Full Text PDFGas-phase reactions of larger gold clusters are poorly known because generation of the intact parent species for mass spectrometric analysis remains quite challenging. Herein we report in-source collision-induced dissociation (CID) results for the monolayer protected clusters (MPCs) Au144(SR)60 and Au130(SR)50, where R- = PhCH2CH2-, in a Bruker micrOTOF time-of-flight mass spectrometer. A sample mixture of the two clusters was introduced into the mass spectrometer by positive mode electrospray ionization.
View Article and Find Full Text PDFThe structure and bonding of the gold-subhalide compounds Au144Cl60([z]) are related to those of the ubiquitous thiolated gold clusters, or Faradaurates, by iso-electronic substitution of thiolate by chloride. Exact I-symmetry holds for the [z] = [2+,4+] charge-states, in accordance with new electrospray mass spectrometry measurements and the predicted electron shell filling. The high symmetry facilitates analysis of the global structure as well as the bonding network, with some striking results.
View Article and Find Full Text PDFThe structure of the recently discovered Au130-thiolate and -dithiolate clusters is explored in a combined experiment-theory approach. Rapid electron diffraction in scanning/transmission electron microscopy (STEM) enables atomic-resolution imaging of the gold core and the comparison with density functional theory (DFT)-optimized realistic structure models. The results are consistent with a 105-atom truncated-decahedral core protected by 25 short staple motifs, incorporating disulfide bridges linking the dithiolate ligands.
View Article and Find Full Text PDFDetermination of the total structure of molecular nanocrystals is an outstanding experimental challenge that has been met, in only a few cases, by single-crystal X-ray diffraction. Described here is an alternative approach that is of most general applicability and does not require the fabrication of a single crystal. The method is based on rapid, time-resolved nanobeam electron diffraction (NBD) combined with high-angle annular dark field scanning/transmission electron microscopy (HAADF-STEM) images in a probe corrected STEM microscope, operated at reduced voltages.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
June 2010
Background, Aim, And Scope: Organoarsenical-containing animal feeds that promote growth and resistance to parasites are mostly excreted unchanged, ending up in nearby wastewater storage lagoons. Earlier work documented the partial transformation of organoarsenicals, such as, 3-nitro-4-hydroxyphenylarsonic acid (roxarsone) to the more toxic inorganic arsenate [As(V)] and 3-amino-4-hydroxyphenylarsonic acid (3-AHPAA). Unidentified roxarsone metabolites using liquid chromatography coupled to inductively coupled plasma mass spectrometry (LC/ICP-MS) were also inferred from the corresponding As mass balance.
View Article and Find Full Text PDFConcentrated animal feeding operations around the globe generate large amounts of nitrous oxide (N(2)O) in the surrounding atmosphere. Liquid animal waste systems have received little attention with respect to N(2)O emissions. We hypothesized that the solution chemistry of animal waste aqueous suspensions would promote conditions that lead to N(2)O supersaturation at the liquid/air interface.
View Article and Find Full Text PDFElevated lead (Pb) concentrations in residential houseyards around house walls painted with Pb-based pigments pose serious human health risks, especially to children. Vetiver grass (Vetiveria zizanioides L.) has shown promise for use in in situ Pb phytoremediation efforts.
View Article and Find Full Text PDFDichloro(ethylenediamine)platinum(II), Pt(en)Cl(2), was dissolved in H(2)O and D(2)O, and the resulting aqueous solutions were electrosprayed into a quadrupole ion-trap mass spectrometer. A series of major and minor ionic hydrolysis products were detected. These ions were then subjected to collision-induced dissociation.
View Article and Find Full Text PDFEthylenediamene tetraacetic acid (EDTA) has been used to mobilize soil lead (Pb) and enhance plant uptake for phytoremediation. Chelant bound Pb is considered less toxic compared to free Pb ions and hence might induce less stress on plants. Characterization of possible Pb complexes with phytochelatins (PCn, metal-binding peptides) and EDTA in plant tissues will enhance our understanding of Pb tolerance mechanisms.
View Article and Find Full Text PDFAnimal wastewater lagoons nearby concentrated animal feeding operations (CAFOs) represent the latest tendency in global animal farming, severely impacting the magnitude of greenhouse gas emissions, including nitrous oxide (N(2)O). We hypothesized that lagoon wastewater could be supersaturated with N(2)O as part of incomplete microbial nitrification/denitrification processes, thereby regulating the N(2)O partitioning in the gaseous phase. The objectives of this study were: (i) to investigate the magnitude of dissolved N(2)O concentrations in the lagoon; and (ii) to determine the extent to which supersaturation of N(2)O occurs in wastewater lagoons.
View Article and Find Full Text PDFA growing body of literature reports 3-nitro-4-hydroxyphenylarsonic acid (roxarsone) degradation in poultry litter (PL) to the more toxic inorganic arsenic (As). Aluminum-based drinking-water treatment residuals (WTR) present a low-cost amendment technology to reduce As availability in PL, similar to the use of alum to reduce phosphorus availability. Batch experiments investigated the effectiveness of WTR in removing roxarsone and inorganic As species from PL aqueous suspensions.
View Article and Find Full Text PDFAqueous solutions of dichloro(ethylenediamine)palladium(II) were investigated using electrospray mass spectrometry (ESMS). The most abundant peak (m/z 436.8) was attributed to the dimeric Pd(en)Cl2.
View Article and Find Full Text PDF