Phys Chem Chem Phys
January 2024
The efficiency of machine learning algorithms for electronically excited states is far behind ground-state applications. One of the underlying problems is the insufficient smoothness of the fitted potential energy surfaces and other properties in the vicinity of state crossings and conical intersections, which is a prerequisite for an efficient regression. Smooth surfaces can be obtained by switching to the diabatic basis.
View Article and Find Full Text PDFCFN is a promising candidate for the replacement of sulfur hexafluoride as an insulating medium, and it is important to understand the chemical changes initiated in the molecule by collision with free electrons, specifically the formation of neutral fragments. The first step of neutral fragmentation is electronic excitation, yet neither the absorption spectrum in the vacuum ultraviolet (VUV) region nor the electron energy loss spectrum have previously been reported. Here, we experimentally probed the excited states by VUV photoabsorption spectroscopy and electron energy loss spectroscopy (EELS).
View Article and Find Full Text PDFJ Chem Theory Comput
October 2021
Nuclear densities are frequently represented by an ensemble of nuclear configurations or points in the phase space in various contexts of molecular simulations. The size of the ensemble directly affects the accuracy and computational cost of subsequent calculations of observable quantities. In the present work, we address the question of how many configurations do we need and how to select them most efficiently.
View Article and Find Full Text PDFWe explore the range of applicability of the nuclear ensemble method (NEM) for quantitative simulations of absorption spectra and their temperature variations. We formulate a "good practice" for the NEM based on statistical theory. Special attention is paid to proper treatment of uncertainty estimation including the convergence with the number of samples, which is often neglected in the field.
View Article and Find Full Text PDFWe explore solvation of electrons in nonpolar matter, here represented by butadiene clusters. Isolated butadiene supports only the existence of transient anions (resonances). Two-dimensional electron energy loss spectroscopy shows that the resonances lead to an efficient vibrational excitation of butadiene, which can result into the almost complete loss of energy of the interacting electron.
View Article and Find Full Text PDFIons have a profound effect on the geometrical structure of liquid water and an aqueous environment is known to change the electronic structure of ions. Here we combine photoelectron spectroscopy measurements from liquid microjets with molecular dynamical and quantum chemical calculations to address the reverse question, to what extent do ions affect the electronic structure of liquid water? We study aqueous solutions of sodium iodide (NaI) over a wide concentration range, from nearly pure water to 8 M solutions, recording spectra in the 5 to 60 eV binding energy range to include all water valence and the solute Na 2p, I 4d, and I 5p orbital ionization peaks. We observe that the electron binding energies of the solute ions change only slightly as a function of electrolyte concentration, less than 150 ± 60 meV over an ∼8 M range.
View Article and Find Full Text PDF