Publications by authors named "Stensmyr M"

Humanity has long battled mosquitoes and the diseases they transmit-a struggle intensified by climate change and globalization, which have expanded mosquito ranges and the spread of associated diseases. Additionally, widespread insecticide resistance has reduced the efficacy of current control methods, necessitating new solutions. Nootkatone, a natural compound found in grapefruit, shows promise as both a mosquito repellent and an insecticide.

View Article and Find Full Text PDF

Schreckstoff (fear substance) is an alarm signal released by injured fish that induces a fear response. Its chemical nature has long been debated. A new study finds that zebrafish Schreckstoff is composed of at least three components, two of which elicit the fear response only in combination.

View Article and Find Full Text PDF

The bee louse (Braula coeca) is a honeybee inquiline and a long-standing taxonomic mystery. A new study unravels their genomic architecture and shows that these enigmatic flies have evolved from scale insect-exploiting drosophilid ancestors and share genetic similarities with their honeybee hosts.

View Article and Find Full Text PDF

The ability to perform genomic sequencing on long-dead organisms is opening new frontiers in evolutionary research. These opportunities are especially notable in the case of museum collections, from which countless documented specimens may now be suitable for genomic analysis-if data of sufficient quality can be obtained. Here, we report 25 newly sequenced genomes from museum specimens of the model organism Drosophila melanogaster, including the oldest extant specimens of this species.

View Article and Find Full Text PDF

Food texture affects palatability. A new study finds that the common dew fly Drosophila melanogaster is also choosy when it comes to food texture. Flies evaluate size and presence of food particles through neurons in the tongue that express the mechanically activated channel protein TMEM63.

View Article and Find Full Text PDF

Catnip (Nepeta cataria) is a common garden herb well known for its euphoric and hallucinogenic effects on domestic cats, for its medicinal properties, as well as for its powerful repellent action on insects. Catnip extracts have been proposed as a natural alternative to synthetic insect repellents, such as N,N-diethyl-3-methylbenzamide (DEET), but how catnip triggers aversion in insects is not known. Here, we show that, both in Drosophila melanogaster flies and Aedes aegypti mosquitoes, the major mediator of catnip repellency is the widely conserved chemical irritant receptor TRPA1.

View Article and Find Full Text PDF

The invasive yellow-fever mosquito Aedes aegypti preferentially feeds on human blood. A new study finds that human-biting in this important disease vector might just be an unfortunate side effect of breeding in human-stored water.

View Article and Find Full Text PDF

Geosmin is one of the most recognizable and common microbial smells on the planet. Some insects, like mosquitoes, require microbial-rich environments for their progeny, whereas for other insects such microbes may prove dangerous. In the vinegar fly Drosophila melanogaster, geosmin is decoded in a remarkably precise fashion and induces aversion, presumably signaling the presence of harmful microbes [1].

View Article and Find Full Text PDF

A long-standing enigma concerns the geographic and ecological origins of the intensively studied vinegar fly, Drosophila melanogaster. This globally distributed human commensal is thought to originate from sub-Saharan Africa, yet until recently, it had never been reported from undisturbed wilderness environments that could reflect its precommensal niche. Here, we document the collection of 288 D.

View Article and Find Full Text PDF

Mosquitoes use olfaction as a primary means of detecting their hosts. Previously, the functional ablation of a family of Aedes aegypti olfactory receptors, the odorant receptors (ORs), was not sufficient to reduce host seeking in the presence of carbon dioxide (CO). This suggests the olfactory receptors that remain, such as the ionotropic receptors (IRs), could play a significant role in host detection.

View Article and Find Full Text PDF

Although the vinegar fly Drosophila melanogaster is arguably the most studied organism on the planet, fundamental aspects of this species' natural ecology have remained enigmatic [1]. We have here investigated a wild population of D. melanogaster from a mopane forest in Zimbabwe.

View Article and Find Full Text PDF

Olfaction presents a particularly interesting arena to explore abstraction in language. Like other abstract domains, such as time, odours can be difficult to conceptualize. An odour cannot be seen or held, it can be difficult to locate in space, and for most people odours are difficult to verbalize.

View Article and Find Full Text PDF

While some mosquitoes are known to have an innate penchant for human hosts, new research details that they can learn, what they can learn and how they can learn.

View Article and Find Full Text PDF

Chemosignals are used by predators to localize prey and by prey to avoid predators. These cues vary between species, but the odor of blood seems to be an exception and suggests the presence of an evolutionarily conserved chemosensory cue within the blood odor mixture. A blood odor component, E2D, has been shown to trigger approach responses identical to those triggered by the full blood odor in mammalian carnivores and as such, is a key candidate as a food/alarm cue in blood.

View Article and Find Full Text PDF

The Drosophila antenna contains receptor neurons for mechanical, olfactory, thermal, and humidity stimuli. Neurons expressing the ionotropic receptor IR40a have been implicated in the selection of an appropriate humidity range [1, 2], but although previous work indicates that insect hygroreceptors may be made up by a "triad" of neurons (with a dry-, a cold-, and a humid-air-responding cell [3]), IR40a expression included only cold- and dry-air cells. Here, we report the identification of the humid-responding neuron that completes the hygrosensory triad in the Drosophila antenna.

View Article and Find Full Text PDF

Understanding how and why some species become pests, while their relatives remain harmless, might help us control them. A new study looks at how sensory mechanisms evolved in an emerging pest fly species.

View Article and Find Full Text PDF

A new study reports the presence of a chemosensory pseudogene in Drosophila sechellia, which in spite of carrying a premature stop-codon nevertheless encodes a fully functional and full-length protein. Such 'pseudo-pseudogenes' might well be a widespread phenomenon.

View Article and Find Full Text PDF

Background: The whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) is among the 100 worst invasive species in the world. As one of the most important crop pests and virus vectors, B. tabaci causes substantial crop losses and poses a serious threat to global food security.

View Article and Find Full Text PDF

Feces is an abundant, rich source of energy, utilized by a myriad of organisms, not least by members of the order Diptera, i.e., flies.

View Article and Find Full Text PDF

Environmental humidity influences the fitness and geographic distribution of all animals [1]. Insects in particular use humidity cues to navigate the environment, and previous work suggests the existence of specific sensory mechanisms to detect favorable humidity ranges [2-5]. Yet, the molecular and cellular basis of humidity sensing (hygrosensation) remains poorly understood.

View Article and Find Full Text PDF

Detecting danger is one of the foremost tasks for a neural system. Larval parasitoids constitute clear danger to Drosophila, as up to 80% of fly larvae become parasitized in nature. We show that Drosophila melanogaster larvae and adults avoid sites smelling of the main parasitoid enemies, Leptopilina wasps.

View Article and Find Full Text PDF

Not only is the sense of smell of pivotal importance to most animals but also serves as a significant model system in biological research. In recent years, great strides in our understanding of how the olfactory system is organized and operates have been made. Instrumental in these efforts has been work performed in Drosophila melanogaster.

View Article and Find Full Text PDF

Background: Dietary antioxidants play an important role in preventing oxidative stress. Whether animals in search of food or brood sites are able to judge the antioxidant content, and if so actively seek out resources with enriched antioxidant content, remains unclear.

Results: We show here that the vinegar fly Drosophila melanogaster detects the presence of hydroxycinnamic acids (HCAs)-potent dietary antioxidants abundant in fruit-via olfactory cues.

View Article and Find Full Text PDF