Publications by authors named "Sten Ten Klooster"

Spatiotemporal assessment of lipid and protein oxidation is key for understanding quality deterioration in emulsified food products containing polyunsaturated fatty acids. In this work, we first mechanistically validated the use of the lipid oxidation-sensitive fluorophore BODIPY 665/676 as a semi-quantitative marker for local peroxyl radical formation. Next, we assessed the impact of microfluidic and colloid mill emulsification (respectively producing mono- and polydisperse droplets) on local protein and lipid oxidation kinetics in whey protein isolate (WPI)-stabilized emulsions.

View Article and Find Full Text PDF

Lipid oxidation in emulsions is hypothesised to increase with decreasing droplet size, as this increases the specific oil-water interfacial area, where lipid oxidation is expected to be initiated. In literature, however, contradictory results have been reported, which can be caused by confounding factors such as the oil droplet polydispersity and the distribution of components between the available phases. In this work, monodisperse surfactant-stabilised emulsions with highly controlled droplet sizes of 4.

View Article and Find Full Text PDF

Hypothesis: The shelf life of multiphase systems, e.g. oil-in-water (O/W) emulsions, is severely limited by physical and/or chemical instabilities, which degrade their texture, macroscopic appearance, sensory and (for edible systems) nutritional quality.

View Article and Find Full Text PDF

Microfluidic emulsification has the potential to produce emulsions with very controlled droplet sizes in a subtle manner. To support in unleashing this potential, we provide guidelines regarding upscaling based on the performance of Upscale Partitioned EDGE (UPE) devices, using rapeseed oil as the to-be-dispersed phase and whey proteins as the emulsifier. The UPE device (11,000 droplet formation units (DFUs) of 5 × 1 µm) produced 3.

View Article and Find Full Text PDF

Lipid oxidation is a major factor limiting the shelf life of food and other emulsion products. In this work, we explore which lipid oxidation products may transfer between oil droplets in model food emulsions stabilized by excess amounts of surfactant, and whether this affects the overall reaction. No significant differences in concentrations of triglyceride-bound hydroperoxides were found before and after mixing 'clean' oil droplets with pre-oxidized ones.

View Article and Find Full Text PDF

Lipid oxidation is a well-recognized issue in dried food emulsions, such as infant milk formula. Antioxidants can be used to mitigate this issue; however, their efficiency in such complex systems is far from understood. In this study, antioxidant polarity is varied through the alkyl chain length of gallic acid esters (0-16 carbon atoms) incorporated to O/W emulsions that are subsequently spray-dried.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: