Publications by authors named "Sten G Eriksson"

This paper describes a study of the system MoO-NdO using a combination of X-ray powder diffraction (XRD), neutron powder diffraction (NPD), thermogravimetric analysis (TGA), and ac impedance spectroscopy (IS). A phase-pure material is observed at a composition of 45.5 mol % NdO, which corresponds to an ideal stoichiometry of NdMoO.

View Article and Find Full Text PDF

The origin of the 2-order of magnitude difference in the proton conductivity of the hydrated forms of hexagonal and cubic oxygen deficient BaScTiO (x = 0.2 and x = 0.7) was probed using a combination of neutron diffraction and density functional theory techniques to support published X-ray diffraction, conductivity, thermogravimetric and differential scanning calorimetry studies.

View Article and Find Full Text PDF

This article establishes the effect of structure and composition on water uptake and the hydration and proton transport properties of the oxygen-deficient perovskite series BaTi1-x(In,Sc)xO3-x/2, with 0.2 ≤ x ≤ 0.7.

View Article and Find Full Text PDF

Three different perovskite-related phases were isolated in the SrGa(1-x)Sc(x)O(2.5) system: Sr(2)GaScO(5), Sr(10)Ga(6)Sc(4)O(25), and SrGa(0.75)Sc(0.

View Article and Find Full Text PDF

Neutron total scattering data have been used to probe the long- and short-range structure of 0.5BiMnO(3)-0.5ATiO(3) (A = Ba or Sr).

View Article and Find Full Text PDF

The highly disordered structure of the delta phase of Bi2O3, which possesses the highest known oxide-ion conductivity, has been studied using neutron powder diffraction. A detailed analysis of data collected at 1033(3) K using Rietveld refinement indicates that the time-averaged structure of delta-Bi2O3 can be described using the accepted model of a disordered, anion-deficient fluorite structure in space group Fm3m. However, reverse Monte Carlo modelling of the total (Bragg plus diffuse) scattering demonstrates that the local anion environment around the Bi3+ resembles the distorted square pyramidal arrangement found within the stable alpha and metastable beta phases at ambient temperature, which is characteristic of the cation's 6s2 lone-pair configuration.

View Article and Find Full Text PDF