Publications by authors named "Stemp G"

Obesity is a major public health concern that is associated with negative health outcomes. Exercise and dietary restriction are commonly recommended to prevent or combat obesity. This study investigates how voluntary exercise mitigates abnormal gene expression in the hypothalamic arcuate nucleus (ARC) of diet-induced obese (DIO) rats.

View Article and Find Full Text PDF

RIP2 kinase has been identified as a key signal transduction partner in the NOD2 pathway contributing to a variety of human pathologies, including immune-mediated inflammatory diseases. Small-molecule inhibitors of RIP2 kinase or its signaling partners on the NOD2 pathway that are suitable for advancement into the clinic have yet to be described. Herein, we report our discovery and profile of the prodrug clinical compound, inhibitor , currently in phase 1 clinical studies.

View Article and Find Full Text PDF

The hypothalamic peptides orexin-A and orexin-B are potent agonists of two G-protein coupled receptors, namely the OX(1) and the OX(2) receptor. These receptors are widely distributed, though differentially, in the rat brain. In particular, the OX(1) receptor is highly expressed throughout the hypothalamus, whilst the OX(2) receptor is mainly located in the ventral posterior nucleus.

View Article and Find Full Text PDF

Optimisation of a series of benzazepine sulfonamide hit compounds identified from high throughput screening led to the discovery of a new series of tractable, potent motilin receptor agonists.

View Article and Find Full Text PDF

N-(3-fluorophenyl)-1-[(4-([(3S)-3-methyl-1-piperazinyl]methyl)phenyl)acetyl]-4-piperidinamine 12 (GSK962040) is a novel small molecule motilin receptor agonist. It possesses excellent activity at the recombinant human motilin receptor and also at the native rabbit motilin receptor where its agonist activity results in potentiation of the amplitude of neuronal-mediated contractions of isolated gastric antrum tissue. Compound 12 also possesses highly promising pharmacokinetic profiles in both rat and dog, and these results, in combination with further profiling in human native tissue and an in vivo model of gastrointestinal transit in the rabbit, have led to its selection as a candidate for further development.

View Article and Find Full Text PDF

Optimisation of urea (5), identified from high throughput screening and subsequent array chemistry, has resulted in the identification of pyridine carboxamide (33) which is a potent motilin receptor agonist possessing favourable physicochemical and ADME profiles. Compound (33) has demonstrated prokinetic-like activity both in vitro and in vivo in the rabbit and therefore represents a promising novel small molecule motilin receptor agonist for further evaluation as a gastroprokinetic agent.

View Article and Find Full Text PDF

High-throughput screening resulted in the identification of a series of novel motilin receptor agonists with relatively low molecular weights. The series originated from an array of biphenyl derivatives designed to target 7-transmembrane (7-TM) receptors. Further investigation of the structure-activity relationship within the series resulted in the identification of compound (22) as a potent and selective agonist at the motilin receptor.

View Article and Find Full Text PDF

6-Phenylnicotinamide (2) was previously identified as a potent TRPV1 antagonist with activity in an in vivo model of inflammatory pain. Optimization of this lead through modification of both the biaryl and heteroaryl components has resulted in the discovery of 6-(4-fluorophenyl)-2-methyl-N-(2-methylbenzothiazol-5-yl)nicotinamide (32; SB-782443) which possesses an excellent overall profile and has been progressed into pre-clinical development.

View Article and Find Full Text PDF

Starting from a benzazepine sulfonamide 5-HT(6) receptor antagonist lead with limited brain penetration, application of a strategy of conformational constraint and reduction of hydrogen bond donor count led to a novel series of tricyclic derivatives with high 5-HT(6) receptor affinity and excellent brain:blood ratios.

View Article and Find Full Text PDF

This article is focusing on further optimization of previously described hydroxy ethylamine (HEA) BACE-1 inhibitors obtained from a focused library with the support of X-ray crystallography. Optimization of the non-prime side of our inhibitors and introduction of a 6-membered sultam substituent binding to Asn-294 as well as a fluorine in the C-2 position led to derivatives with nanomolar potency in cell-based assays.

View Article and Find Full Text PDF
Article Synopsis
  • Inhibition of BACE-1 could lead to new treatments for Alzheimer's disease.
  • The study involved creating potential drug candidates with the help of X-ray crystallography.
  • Discovered inhibitors effectively reduced amyloid production in laboratory tests.
View Article and Find Full Text PDF

This paper describes the discovery of non-peptidic, potent, and selective hydroxy ethylamine (HEA) inhibitors of BACE-1 by replacement of the prime side of a lead di-amide 2. Inhibitors with nanosmolar potency and high selectivity were identified. Depending on the nature of the P(1)(') and P(2)(') substituents, two different binding modes were observed in X-ray co-crystal structures.

View Article and Find Full Text PDF

The discovery of new highly potent and selective dopamine D3 receptor antagonists has recently permitted characterization of the role of the dopamine D3 receptor in a wide range of preclinical animal models. A novel series of 1,2,4-triazol-3-yl-thiopropyl-tetrahydrobenzazepines demonstrating a high level of D3 affinity and selectivity with an excellent pharmacokinetic profile is reported here. In particular, the pyrazolyl derivative 35 showed good oral bioavailability and brain penetration associated with high potency and selectivity in vitro.

View Article and Find Full Text PDF

A series of 5-(piperidinylethyloxy)quinoline 5-HT(1) receptor ligands have been studied by elaboration of the series of dual 5-HT(1)-SSRIs reported previously. These new compounds display a different pharmacological profile with potent affinity across the 5-HT(1A), 5-HT(1B) and 5-HT(1D) receptors and selectivity against the serotonin transporter. Furthermore, they have improved pharmacokinetic profiles and CNS penetration.

View Article and Find Full Text PDF

A concise and convergent eight-step synthesis of the antifungal metabolite monocerin 1 is reported. The key step involves an allylsilane metathesis/aldehyde condensation sequence to establish the core 2,3,5-trisubstituted tetrahydrofuran. End-game approaches based around intramolecular Heck chemistry revealed an interesting example of formal 6-endo cyclisation, the origin of which was probed using model substrates.

View Article and Find Full Text PDF

On June 15, 2006, the Society for Medicines Research held a one-day meeting in Harlow, United Kingdom, entitled Translational Sciences-Turning Drug-like Molecules into Medicines. The meeting brought together speakers from Europe representing the pharmaceutical industry and provided an overview on some of the latest approaches in a range of areas such as predictive toxicology, translational biology, in vitro-in vivo extrapolation, pharmacokinetic/pharmacodynamic modeling, and the use of biomarkers and surrogate endpoints.

View Article and Find Full Text PDF

A strategy of systematically targeting more rigid analogues of the known MCH R1 receptor antagonist, SB-568849, serendipitously uncovered a binding mode accessible to N-aryl-phthalimide ligands. Optimisation to improve the stability of this compound class led to the discovery of novel N-aryl-quinazolinones, benzotriazinones and thienopyrimidinones as selective ligands with good affinity for human melanin-concentrating hormone receptor 1.

View Article and Find Full Text PDF

We report here the discovery of a class of MCH R1 ligands based on a biphenyl carboxamide template. A docked-in model is presented indicating key interactions in the putative binding site of the receptor. Parallel high throughput synthetic techniques were utilised to allow rapid exploration of the structure-activity relationship around this template, leading to compound SB-568849 which possessed good receptor affinity and selectivity.

View Article and Find Full Text PDF

Starting from the high throughput screening hit (3), novel N-tetrahydroquinolinyl, N-quinolinyl and N-isoquinolinyl carboxamides have been identified as potent antagonists of the ion channel TRPV1. The N-quinolinylnicotinamide (46) showed excellent potency at human, guinea pig and rat TRPV1, a favourable in vitro DMPK profile and activity in an in vivo model of inflammatory pain.

View Article and Find Full Text PDF

Small molecule antagonists of the vanilloid receptor TRPV1 (also known as VR1) are disclosed. Pyrrolidinyl ureas such as 8 and 15 (SB-705498) emerged as lead compounds following optimisation of the previously described urea SB-452533. Pharmacological studies using electrophysiological and FLIPR-Ca2+-based assays showed that compounds such as 8 and 15 were potent antagonists versus the multiple chemical and physical modes of TRPV1 activation (namely capsaicin, acid and noxious heat).

View Article and Find Full Text PDF

Starting from the potent and selective but poorly brain penetrant 5-HT6 receptor antagonist SB-271046, a successful strategy for improving brain penetration was adopted involving conformational constraint with concomitant reduction in hydrogen bond count. This provided a series of bicyclic heteroarylpiperazines with high 5-HT6 receptor affinity. 5-Chloroindole 699929 combined high 5-HT6 receptor affinity with excellent brain penetration and also had good oral bioavailability in both rat and dog.

View Article and Find Full Text PDF

Starting from a high throughput screening hit, a series of 3,4-dihydro-2H-benzoxazinones has been identified with both high affinity for the 5-HT(1A) receptor and potent 5-HT reuptake inhibitory activity. The 5-(2-methyl)quinolinyloxy derivative combined high 5-HT(1A/1B/1D) receptor affinities with low intrinsic activity and potent inhibition of the 5-HT reuptake site (pK(i)8.2).

View Article and Find Full Text PDF

At their clinical doses, current antipsychotic agents share the property of both dopamine D(2) and D(3) receptor blockade. However, a major disadvantage of many current medications are the observed extrapyramidal side-effects (EPS), postulated to arise from D(2) receptor antagonism. Consequently, a selective dopamine D(3) receptor antagonist could offer an attractive antipsychotic therapy, devoid of the unwanted EPS.

View Article and Find Full Text PDF

Starting from a series of 7-linked tetrahydroisoquinoline derivatives, as exemplified by SB-270664, a new series of 8,8-dimethylnaphthyridine compounds has been identified. SAR studies around these attractive leads have provided compounds such as 12 which display excellent anticonvulsant activity and an encouraging pharmacokinetic profile in vivo.

View Article and Find Full Text PDF

The oxidation of a range of cyclic allylic alcohols and amides with OsO4/TMEDA is presented. Under these conditions, hydrogen bonding control leads to the (contrasteric) formation of the syn isomer in almost every example that was examined. Evidence for the bidentate binding of TMEDA to OsO4 is presented and a plausible mechanism described.

View Article and Find Full Text PDF