Purpose: The maintenance of peri-implant health relies significantly on the integrity of the peri-implant seal, particularly vulnerable at the interface between implant abutment and soft tissue. Early healing stages around implants involve cellular exposure to oxidative stress. This study aimed to investigate whether vacuum ultraviolet (VUV)-treated titanium augments the growth and functionality of human gingival fibroblasts while mitigating cellular stress.
View Article and Find Full Text PDFPurpose: To examine the behavior and function of human gingival fibroblasts growing on healing abutments with or without laser-textured topography.
Materials And Methods: Human primary gingival connective tissue fibroblasts were cultured on healing abutments with machined or laser-textured (Laser-Lok, BioHorizons) surfaces. Cellular and molecular responses were evaluated by a variety of tests, including cell density assay (WST-1), fluorescence microscopy, real-time quantitative reverse-transcription polymerase chain reaction (qRT-PCR), and detachment tests.
The development of healthy peri-implant soft tissues is critical to achieving the esthetic and biological success of implant restorations throughout all stages of healing and tissue maturation, starting with provisionalization. The purpose of this study was to investigate the effects of eight different implant provisional materials on human gingival fibroblasts at various stages of cell settlement by examining initial cell attachment, growth, and function. Eight different specimens-bis-acrylic 1 and 2, flowable and bulk-fill composites, self-curing acrylic 1 and 2, milled acrylic, and titanium (Ti) alloy as a control-were fabricated in rectangular plates ( = 3).
View Article and Find Full Text PDF