: Cochlear implants (CI) restore functional hearing in the majority of deaf patients. Despite the tremendous success of these devices, some limitations remain. The bottleneck for optimal electrical stimulation with CI is caused by the anatomical gap between the electrode array and the auditory neurons in the inner ear.
View Article and Find Full Text PDFWe aimed to evaluate the magnetic resonance imaging (MRI) contrast effect and delivery efficiency through the middle ear into the inner ear using novel super-paramagnetic maghemite (γ-Fe O ) nanoparticles (NPs) generated using ceric ammonium nitrate (CAN)-mediated oxidation of Fe O NPs (CAN-γ-Fe O NPs). The CAN-γ-Fe2O3 NPs, having hydrodynamic diameters of 50-60 nm and potentials of +55.2 mV, displayed super-paramagnetic behavior characterized by a saturation magnetization Ms of 75.
View Article and Find Full Text PDFGenetic modification of cell transplant populations and cell tracking ability are key underpinnings for effective cell therapies. Current strategies to achieve these goals utilize methods which are unsuitable for clinical translation because of related safety issues, and multiple protocol steps adding to cost and complexity. Multifunctional magnetic nanoparticles (MNPs) offering dual mode gene delivery and imaging contrast capacity offer a valuable tool in this context.
View Article and Find Full Text PDFA ceric ammonium nitrate (CAN)-based doping step was used for the fabrication of core maghemite nanoparticles (NPs) that enabled the obtainment of colloid particles with a view to a high-level nanoparticle (NP) surface doping by Ce(III/IV). Such doping of Ce(III/IV) cations enables one to exploit their quite rich coordination chemistry for ligand coordinative binding. In fact, they were shown to act as powerful Lewis acid centers for attaching any organic (Lewis base) ligand such as a 25 kDa branched PEI polymer.
View Article and Find Full Text PDF