Background: Perioperative myocardial infarction/injury (PMI) is a frequent, often missed and incompletely understood complication of noncardiac surgery. The aim of this study was to evaluate whether patient- or procedure-related factors are more strongly associated to the development of PMI in patients undergoing repeated noncardiac surgery.
Methods: In this prospective observational study, patient- and procedure-related factors were evaluated for contribution to PMI using: 1) logistic regression modelling with PMI as primary endpoint, 2) evaluation of concordance of PMI occurrence in the first and the second noncardiac surgery (surgery 1 and 2).
Background: The impact of obesity on the incidence of perioperative myocardial infarction/injury (PMI) and mortality following non-cardiac surgery is not well understood.
Methods: We performed a prospective diagnostic study enrolling consecutive patients undergoing non-cardiac surgery, who were considered at increased cardiovascular risk. All patients were screened for PMI, defined as an absolute increase from preoperative to postoperative sensitive/high-sensitivity cardiac troponin T (hs-cTnT) concentrations.
Background: We aimed to directly compare preoperative high-sensitivity cardiac troponin (hs-cTn) I and T concentration for the prediction of major cardiac complications after non-cardiac surgery.
Methods: We measured hs-cTnI and hs-cTnT preoperatively in a blinded fashion in 1022 patients undergoing non-cardiac surgery. The primary endpoint was a composite of major cardiac complications including cardiac death, cardiac arrest, myocardial infarction, clinically relevant arrhythmias, and acute heart failure within 30 days.
Background: Perioperative myocardial injury (PMI) seems to be a contributor to mortality after noncardiac surgery. Because the vast majority of PMIs are asymptomatic, PMI usually is missed in the absence of systematic screening.
Methods: We performed a prospective diagnostic study enrolling consecutive patients undergoing noncardiac surgery who had a planned postoperative stay of ≥24 hours and were considered at increased cardiovascular risk.
Background: Single biomarker approaches provide only moderate accuracy in the non-invasive detection of exercise-induced myocardial ischemia. We therefore assessed the combination of the two most promising single biomarkers: high-sensitivity cardiac troponin I (hs-cTnI) and B-type natriuretic peptide (BNP).
Methods: Consecutive patients with suspected myocardial ischemia referred to stress myocardial perfusion single-photon emission tomography imaging (MPI) were enrolled.
Background: This study aimed to prospectively advance a rule-out strategy for functionally significant coronary artery disease (CAD) by use of high-sensitivity cardiac troponin I (hs-cTnI) from bench to bedside, by application of a 3-step approach: validation in serum, correlation in plasma, and application on a clinical platform.
Methods: Patients without known CAD referred for rest/stress myocardial perfusion single-photon emission tomography/computer tomography (MPI-SPECT/CT) were assigned to 3 consecutive cohorts: validation, correlation, and application. Functionally relevant CAD was adjudicated with the use of expert interpretation of MPI-SPECT/CT and, if available, coronary angiography.