Publications by authors named "Stella Kritikou"

Purpose: To examine whether the children's superiority, over adults, to resist fatigue during repeated maximal-efforts depends on their often-cited oxidative advantage, attributed to greater muscle blood flow and O-delivery. We also investigated the mechanisms underlying child-adult differences in muscle-oxygenation (due to O-supply or O-utilization) and examined if there are age-differences in cerebral-oxygenation response (a brain-activation index).

Methods: Eleven men (23.

View Article and Find Full Text PDF

Introduction: Patients with idiopathic pulmonary fibrosis (IPF) have reduced exercise capacity and often present exertional dyspnea and desaturation. The role of autonomic nervous system (ANS) as a pathogenetic contributor to this dysfunction has not been evaluated.

Objective: To evaluate whether improvement of arterial oxygen saturation (SpO ) via oxygen supplementation results to ANS function improvement, during steady state submaximal exercise.

View Article and Find Full Text PDF

Background: The integrative physiological effects of O treatment on patients with pulmonary hypertension (PH) during exercise, have not been fully investigated. We simultaneously evaluated, for the first time, the effect of oxygen supplementation on hemodynamic responses, autonomic modulation, tissue oxygenation, and exercise performance in patients with pulmonary arterial hypertension (PAH)/Chronic Thromboembolic PH(CTEPH).

Material-methods: In this randomized, cross-over, placebo-controlled trial, stable outpatients with PAH/CTEPH underwent maximal cardiopulmonary exercise testing, followed by two submaximal trials, during which they received supplementary oxygen (O) or medical-air.

View Article and Find Full Text PDF

Auxiliary basis sets specifically matched to the correlation consistent cc-pVnZ-F12 and cc-pCVnZ-F12 orbital basis sets for the elements H-Ar have been optimized at the density-fitted second-order Møller-Plesset perturbation theory level of theory for use in explicitly correlated (F12) methods, which utilize density fitting for the evaluation of two-electron integrals. Calculations of the correlation energy for a test set of small to medium sized molecules indicate that the density fitting error when using these auxiliary sets is 2 to 3 orders of magnitude smaller than the F12 orbital basis set incompleteness error. The error introduced by the use of these fitting sets within the resolution-of-the-identity approximation of the many-electron integrals arising in F12 theory has also been assessed and is demonstrated to be negligible and well-controlled.

View Article and Find Full Text PDF