Publications by authors named "Stella Itzhakov"

Significant overpotentials between the sensitizer and both the electron and hole conductors hamper the performance of sensitized solar cells, leading to a reduced photovoltage. We show that by using properly designed type-II quantum dots (QDs) between the sensitizer and the hole conductor in thin absorber cells, it is possible to increase the open circuit voltage (Voc) by more than 100 mV. This increase is due to the formation of a photoinduced dipole (PID) layer.

View Article and Find Full Text PDF

The optical diffraction limit imposes a bound on imaging resolution in classical optics. Over the last twenty years, many theoretical schemes have been presented for overcoming the diffraction barrier in optical imaging using quantum properties of light. Here, we demonstrate a quantum superresolution imaging method taking advantage of nonclassical light naturally produced in fluorescence microscopy due to photon antibunching, a fundamentally quantum phenomenon inhibiting simultaneous emission of multiple photons.

View Article and Find Full Text PDF

A high photovoltage is an essential ingredient for the construction of a high-efficiency quantum dot sensitized solar cell (QDSSC). In this paper we present a novel configuration of QDSSC which incorporates the photoinduced dipole (PID) phenomenon for improved open circuit voltage (Voc). This configuration, unlike previously studied ones with molecular dipoles, is based on a dipole moment which is created only under illumination and is a result of exciton dissociation.

View Article and Find Full Text PDF

Plasmonic antennas are key elements to control the luminescence of quantum emitters. However, the antenna's influence is often hidden by quenching losses. Here, the luminescence of a quantum dot coupled to a gold dimer antenna is investigated.

View Article and Find Full Text PDF

Although colloidal quantum dots (QDs) exhibit excellent photostability under mild excitation, intense illumination makes their emission increasingly intermittent, eventually leading to photobleaching. We study fluorescence of two commonly used types of QDs under pulsed excitation with varying power and repetition rate. The photostability of QDs is found to improve dramatically at low repetition rates, allowing for prolonged optical saturation of QDs without apparent photodamage.

View Article and Find Full Text PDF

A synthetic route for preparation of inorganic WS(2) nanotube (INT)-colloidal semiconductor quantum dot (QD) hybrid structures is developed, and transient carrier dynamics on these hybrids are studied via transient photoluminescence spectroscopy utilizing several different types of QDs. Measurements reveal efficient resonant energy transfer from the QDs to the INT upon photoexcitation, provided that the QD emission is at a higher energy than the INT direct gap. Charge transfer in the hybrid system, characterized using QDs with band gaps below the INT direct gap, is found to be absent.

View Article and Find Full Text PDF

Optical antennas are essential devices to interface light to nanoscale volumes and locally enhance the electromagnetic intensity. Various experimental methods can be used to quantify the antenna amplification on the emission process, yet characterizing the antenna amplification at the excitation frequency solely is a challenging task. Such experimental characterization is highly needed to fully understand and optimize the antenna response.

View Article and Find Full Text PDF

Electron transfer (ET) through proteins, a fundamental element of many biochemical reactions, is studied intensively in aqueous solutions. Over the past decade, attempts were made to integrate proteins into solid-state junctions in order to study their electronic conductance properties. Most such studies to date were conducted with one or very few molecules in the junction, using scanning probe techniques.

View Article and Find Full Text PDF

A new design of dye-sensitized solar cells involves colloidal semiconductor quantum dots that serve as antennas, funneling absorbed light to the charge separating dye molecules via nonradiative energy transfer. The colloidal quantum dot donors are incorporated into the solid titania electrode resulting in high energy transfer efficiency and significant improvement of the cell stability. This design practically separates the processes of light absorption and charge carrier injection, enabling us to optimize each of these separately.

View Article and Find Full Text PDF