We here investigated the dynamic cell-to-cell interactions between tumor and mesenchymal stromal/stem cells (MSCs) by the novel VITVO 3D bioreactor that was customized to develop -like metastatic nodules of Ewing's sarcoma (ES). MSCs are known to contribute to tumor microenvironment as cancer associated fibroblast (CAF) precursors and, for this reason, they have also been used as anti-cancer tools. Using dynamic conditions, the process of tissue colonization and formation of metastatic niches was recreated through tumor cell migration aiming to mimic ES development in patients.
View Article and Find Full Text PDFThe complexity of the central nervous system (CNS) requires researchers to consider all the variables linked to the interaction between the different cell inhabitants. On this basis, any study of the physiological and pathological processes regarding the CNS should consider the balance between the standardization of the assay and the complexity of the cellular system which mimics the microenvironment. One of the main structural and functional components of the CNS is the oligodendrocyte precursor cell (OPC), responsible for developmental myelination and myelin turnover and repair during adulthood following differentiation into mature oligodendrocytes.
View Article and Find Full Text PDFThe potential of tumor three-dimensional (3D) models for the validation of existing or novel anti-cancer therapies has been largely recognized. During the last decade, diverse 3D cell systems have been proposed as a bridging link between two-dimensional (2D) cell cultures and animal models, both considered gold standards in pre-clinical settings. The latest awareness about the power of tailored therapies and cell-based therapies in eradicating tumor cells raises the need for versatile 3D cell culture systems through which we might rapidly understand the specificity of promising anti-cancer approaches.
View Article and Find Full Text PDFRetroviral replication proceeds through obligate integration of the viral DNA into the host genome. In particular, for the HIV-1 genome to enter the nucleus, it must be led through the nuclear pore complex (NPC). During the HIV-1 cytoplasmic journey, the viral core acts as a shell to protect the viral genetic material from antiviral sensors and ensure an adequate environment for reverse transcription.
View Article and Find Full Text PDFHuman immunodeficiency virus type 1 (HIV-1) displays the unique ability to infect nondividing cells. The capsid of HIV-1 is the viral determinant for viral nuclear import. To understand the cellular factors involved in the ability of HIV-1 to infect nondividing cells, we sought to find capsid mutations that allow the virus to infect dividing but not nondividing cells.
View Article and Find Full Text PDF