The present study reports the preparation of a novel class of squalene conjugates with paclitaxel, podophyllotoxin, camptothecin and epothilone A. The obtained compounds are characterized by a squalene tail that makes them able to self-assemble in water, and by a drug unit connected via a disulfide-containing linker to secure the release inside the cell. All the obtained compounds were effectively able to self-assemble and to release the parent drug in vitro.
View Article and Find Full Text PDFThe introduction of a hydrophobic group at position 7 of 9-fluorenone-2-carboxylic acid generates new tubulin binders, the design of which is suggested by modeling studies. The synthesis is based on the use of 2,7-dibromo-fluorenone as starting material. The antiproliferative activity on two different cell lines, fluorescent microscopy, flow cytometry, and sedimentation assay tests confirmed the supposed mechanism.
View Article and Find Full Text PDFModern combinatorial chemistry is used to discover compounds with desired function by an alternative strategy, in which the biological target is directly involved in the choice of ligands assembled from a pool of smaller fragments. Herein, we present the first experimental result where the use of in situ click chemistry has been successfully applied to probe the ligand-binding site of Abl and the ability of this enzyme to form its inhibitor. Docking studies show that Abl is able to allow the in situ click chemistry between specific azide and alkyne fragments by binding to Abl-active sites.
View Article and Find Full Text PDFThe introduction of a methylenthiol group at position 7 of camptothecin was carried out in four steps. This preparation also yielded the corresponding disulfide, which behaves as a prodrug due to its reactivity with glutathione. Assessment of their antiproliferative activities, investigations of their mechanism of action, and molecular modeling analysis indicated that the 7-modified camptothecin derivatives described herein maintain the biological activity and drug-target interactions of the parent compound.
View Article and Find Full Text PDFThe use of Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition permitted the synthesis of a new compound that is able to inhibit the HGF-induced scattering of MDCK (epithelial cells) and in vitro tumorigenesis of H1437 (non-small-cell lung cancer) and GTL-16 (human gastric carcinoma). In agreement with biochemical and biological results, docking studies within the ATP binding site of Met suggested for the new synthesized compound a binding mode similar to that of the active compound Triflorcas previously reported.
View Article and Find Full Text PDFN-[2-Methyl-5-(triazol-1-yl)phenyl]pyrimidin-2-amine derivatives were synthesized and evaluated in vitro for their potential use as inhibitors of Bcr-Abl. The design is based on the bioisosterism between the 1,2,3-triazole ring and the amide group. The synthesis involves a copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) as the key step, with the exclusive production of anti-(1,4)-triazole derivatives.
View Article and Find Full Text PDFThe preparation and biological evaluation of a novel series of dimeric camptothecin derivatives are described. All the new compounds showed a significant ability to inhibit human tumor cell growth with IC(50) values ranging from 0.03 to 12.
View Article and Find Full Text PDF