An important step towards improving performance while reducing weight and maintenance needs is the integration of composite materials into mechanical and aerospace engineering. This subject explores the many aspects of composite application, from basic material characterization to state-of-the-art advances in manufacturing and design processes. The major goal is to present the most recent developments in composite science and technology while highlighting their critical significance in the industrial sector-most notably in the wind energy, automotive, aerospace, and marine domains.
View Article and Find Full Text PDFGraphyne is a material that has unique mechanical properties, but little is known about how these properties change when the material has holes. In this work, the effect of hole geometry, considering circular, triangle, and rhombus hole configurations, on the mechanical nonlinear response of -graphyne structures is studied. Graphyne, graphdiyne, graphyne-3, and graphyne-4 structures are under investigation.
View Article and Find Full Text PDFThe advancement of fundamental sciences in recent decades has led to an increased focus on the prediction of phenomena occurring at the micro and nano scales. Micro- and nanostructures have a wide range of applications in various fields, such as aerospace and automobiles, and are widely used in nano- and micro-sized systems and devices, such as biosensors, nanoactuators, and nanoprobes. The design of these structures relies on a complete understanding of their physical and mechanical behaviors.
View Article and Find Full Text PDFThis work presents an optimization technique to determine the inspection, warranty period, and preventive maintenance policies for micromachines suffering from degradation. Specifically, wear degradation is considered, which is a common failure process for many Micro-Electro-Mechanical Systems (MEMS). The proposed mathematical model examines the impact of quality control on reliability and the duration of the warranty period given by the manufacturer or the supplier to the customer.
View Article and Find Full Text PDFMaterials (Basel)
September 2022
Composites can be engineered to exhibit high strength, high stiffness, and high toughness. Composite structures have been used increasingly in various engineering applications. In recent decades, most fundamentals of science have expanded their reach by many orders of magnitude.
View Article and Find Full Text PDFAdditive manufacturing (AM) technology has been researched and developed for almost three decades. Microscale AM is one of the fastest-growing fields of research within the AM area. Considerable progress has been made in the development and commercialization of new and innovative microscale AM processes, as well as several practical applications in a variety of fields.
View Article and Find Full Text PDFIn this study, a nonlinear, spring-based finite element approach is employed in order to predict the nonlinear mechanical response of graphyne structures under shear loading. Based on Morse potential functions, suitable nonlinear spring finite elements are formulated simulating the interatomic interactions of different graphyne types. Specifically, the four well-known types of γ-graphyne, i.
View Article and Find Full Text PDFIn the present study, a buckling analysis of laminated composite rectangular plates reinforced with multiwalled carbon nanotube (MWCNT) inclusions is carried out using the finite element method (FEM). The rule of mixtures and the Halpin-Tsai model are employed to calculate the elastic modulus of the nanocomposite matrix. The effects of three critical factors, including random dispersion, waviness, and agglomeration of MWCNTs in the polymer matrix, on the material properties of the nanocomposite are analyzed.
View Article and Find Full Text PDFIn this study, a computational procedure for the investigation of the vibration behavior of laminated composite structures, including graphene inclusions in the matrix, is developed. Concerning the size-dependent behavior of graphene, its mechanical properties are derived using nanoscopic empiric equations. Using the appropriate Halpin-Tsai models, the equivalent elastic constants of the graphene reinforced matrix are obtained.
View Article and Find Full Text PDFThe aim of the present study is to provide a computationally efficient and reliable hybrid numerical formulation capable of characterizing the thermomechanical behavior of nanocomposites, which is based on the combination of molecular dynamics (MD) and the finite element method (FEM). A polymeric material is selected as the matrix-specifically, the poly(methyl methacrylate) (PMMA) commonly known as Plexiglas due to its expanded applications. On the other hand, the fullerene C is adopted as a reinforcement because of its high symmetry and suitable size.
View Article and Find Full Text PDF