Psoriatic Arthritis (PsA) is a chronic, inflammatory disease affecting joints, substantially impacting patients' quality of life, with European guidelines for managing PsA emphasizing the importance of assessing hand function. Here, we present a set of novel digital biomarkers (dBMs) derived from a touchscreen-based serious game approach, DaktylAct, intended as a proxy, gamified, objective assessment of hand impairment, with emphasis on fine motor skills, caused by PsA. This is achieved by its design, where the user controls a cannon to aim at and hit targets using two finger pinch-in/out and wrist rotation gestures.
View Article and Find Full Text PDFIntegrating artificial intelligence (AI) solutions into clinical practice, particularly in the field of video capsule endoscopy (VCE), necessitates the execution of rigorous clinical studies. This work introduces a novel software platform tailored to facilitate the conduct of multi-reader multi-case clinical studies in VCE. The platform, developed as a web application, prioritizes remote accessibility to accommodate multi-center studies.
View Article and Find Full Text PDFJMIR Res Protoc
March 2023
Background: Echocardiography (ECHO) is a type of ultrasonographic procedure for examining the cardiac function and morphology, with functional parameters of the left ventricle (LV), such as the ejection fraction (EF) and global longitudinal strain (GLS), being important indicators. Estimation of LV-EF and LV-GLS is performed either manually or semiautomatically by cardiologists and requires a nonnegligible amount of time, while estimation accuracy depends on scan quality and the clinician's experience in ECHO, leading to considerable measurement variability.
Objective: The aim of this study is to externally validate the clinical performance of a trained artificial intelligence (AI)-based tool that automatically estimates LV-EF and LV-GLS from transthoracic ECHO scans and to produce preliminary evidence regarding its utility.
AI-based software applications for personalized nutrition have recently gained increasing attention to help users follow a healthy lifestyle. In this paper, we present a knowledge-based recommendation framework that exploits an explicit dataset of expert-validated meals to offer highly accurate diet plans spanning across ten user groups of both healthy subjects and participants with health conditions. The proposed advisor is built on a novel architecture that includes (a) a qualitative layer for verifying ingredient appropriateness, and (b) a quantitative layer for synthesizing meal plans.
View Article and Find Full Text PDFThe ubiquitous nature of smartphone ownership, its broad application and usage, along with its interactive delivery of timely feedback are appealing for health-related behavior change interventions mobile apps. However, users' perspectives about such apps are vital in better bridging the gap between their design intention and effective practical usage. In this vein, a modified technology acceptance model (mTAM) is proposed here, to explain the relationship between users' perspectives when using an AI-based smartphone app for personalized nutrition and healthy living, namely, PROTEIN, and the mTAM constructs toward behavior change in their nutrition and physical activity habits.
View Article and Find Full Text PDFMild cognitive impairment (MCI), an identified prodromal stage of Alzheimer's Disease (AD), often evades detection in the early stages of the condition, when existing diagnostic methods are employed in the clinical setting. From an alternative perspective, smartphone interaction behavioral data, unobtrusively acquired in a non-clinical setting, can assist the screening and monitoring of MCI and its symptoms' progression. In this vein, the diagnostic ability of digital biomarkers, drawn from Fine Motor Impairment (FMI)- and Spontaneous Written Speech (SWS)-related data analysis, are examined here.
View Article and Find Full Text PDFObjective: Parkinson's Disease (PD) is a progressive neurodegenerative disorder, manifesting with subtle early signs, which, often hinder timely and early diagnosis and treatment. The development of accessible, technology-based methods for longitudinal PD symptoms tracking in daily living, offers the potential for transforming disease assessment and accelerating diagnosis.
Methods: A privacy-aware method for classifying patients and healthy controls (HC), on the grounds of speech impairment present in PD, is proposed.
Freezing of Gait (FoG) is a movement disorder that mostly appears in the late stages of Parkinson's Disease (PD). It causes incapability of walking, despite the PD patient's intention, resulting in loss of coordination that increases the risk of falls and injuries and severely affects the PD patient's quality of life. Stress, emotional stimulus, and multitasking have been encountered to be associated with the appearance of FoG episodes, while the patient's functionality and self-confidence are constantly deteriorating.
View Article and Find Full Text PDFHuman-Computer Interaction (HCI) and games set a new domain in understanding people's motivations in gaming, behavioral implications of game play, game adaptation to player preferences and needs for increased engaging experiences in the context of HCI serious games (HCI-SGs). When the latter relate with people's health status, they can become a part of their daily life as assistive health status monitoring/enhancement systems. Co-designing HCI-SGs can be seen as a combination of art and science that involves a meticulous collaborative process.
View Article and Find Full Text PDFParkinson's Disease (PD) is the second most common neurodegenerative disorder, affecting more than 1% of the population above 60 years old with both motor and non-motor symptoms of escalating severity as it progresses. Since it cannot be cured, treatment options focus on the improvement of PD symptoms. In fact, evidence suggests that early PD intervention has the potential to slow down symptom progression and improve the general quality of life in the long term.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2020
Parkinson's Disease (PD) is the second most common neurodegenerative disorder with the non-motor symptoms preceding the motor impairment that is needed for clinical diagnosis. In the current study, an angle-based analysis that processes activity data during sleep from a smartwatch for quantification of sleep quality, when applied on controls and PD patients, is proposed. Initially, changes in their arm angle due to activity are captured from the smartwatch triaxial accelerometry data and used for the estimation of the corresponding binary state (awake/sleep).
View Article and Find Full Text PDFFine-motor impairment (FMI) is progressively expressed in early Parkinson's Disease (PD) patients and is now known to be evident in the immediate prodromal stage of the condition. The clinical techniques for detecting FMI may not be robust enough and here, we show that the subtle FMI of early PD patients can be effectively estimated from the analysis of natural smartphone touchscreen typing via deep learning networks, trained in stages of initialization and fine-tuning. In a validation dataset of 36,000 typing sessions from 39 subjects (17 healthy/22 PD patients with medically validated UPDRS Part III single-item scores), the proposed approach achieved values of area under the receiver operating characteristic curve (AUC) of 0.
View Article and Find Full Text PDFParkinson's Disease (PD) is the second most common neurodegenerative disorder worldwide, causing both motor and non-motor symptoms. In the early stages, symptoms are mild and patients may ignore their existence. As a result, they do not undergo any related clinical examination; hence delaying their PD diagnosis.
View Article and Find Full Text PDFDepressive disorder (DD) is a mental illness affecting more than 300 million people worldwide, whereas social stigma and subtle, variant symptoms impede diagnosis. Psychomotor retardation is a common component of DD with a negative impact on motor function, usually reflected on patients' routine activities, including, nowadays, their interaction with mobile devices. Therefore, such interactions constitute an enticing source of information towards unsupervised screening for DD symptoms in daily life.
View Article and Find Full Text PDFParkinson's disease (PD) is a degenerative movement disorder causing progressive disability that severely affects patients' quality of life. While early treatment can produce significant benefits for patients, the mildness of many early signs combined with the lack of accessible high-frequency monitoring tools may delay clinical diagnosis. To meet this need, user interaction data from consumer technologies have recently been exploited towards unsupervised screening for PD symptoms in daily life.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
December 2012
Affective phenomena, as reflected through brain activity, could constitute an effective index for the detection of music preference. In this vein, this paper focuses on the discrimination between subjects' electroencephalogram (EEG) responses to self-assessed liked or disliked music, acquired during an experimental procedure, by evaluating different feature extraction approaches and classifiers to this end. Feature extraction is based on time-frequency (TF) analysis by implementing three TF techniques, i.
View Article and Find Full Text PDFElectroencephalogram (EEG) recordings, and especially the Mu-rhythm over the sensorimotor cortex that relates to the activation of the mirror neuron system (MNS), were acquired from two subject groups (orchestral musicians and nonmusicians), in order to explore action representation processes involved in the perception and performance of musical pieces. Two types of stimuli were used, i.e.
View Article and Find Full Text PDF