Publications by authors named "Stelian Maier"

Methotrexate (MTX) is a folic acid antagonist routinely used in cancer treatment, characterized by poor water solubility and low skin permeability. These issues could be mitigated by using drug delivery systems, such as functionalized gold nanoparticles (AuNPs), known for their versatility and unique properties. This study aimed to develop multi-shell AuNPs functionalized with MTX for the improvement of MTX antitumoral, antioxidant, and biocompatibility features.

View Article and Find Full Text PDF

Hyaluronic acid, in the form of a gel or viscoelastic colloidal solution, is currently used for the viscosupplementation of joints affected by osteoarthritis, but its effectiveness is under debate in relation to newer alternatives. Based on meta-analytical arguments, the present article reinforces the opinion that there are still no decisive arguments for its complete replacement but for its use adapted to the peculiarities of the disease manifestation and of the patients. A "broad" comparison is first made with almost all alternatives studied in the last decade, and then a meta-regression study is performed to compare and predict the effect size induced by viscosupplementation therapy and its main challenger of clinical interest, the platelet-rich plasma treatment.

View Article and Find Full Text PDF

The demand for tailored, disease-adapted, and easily accessible radiopharmaceuticals is one of the most persistent challenges in nuclear imaging precision medicine. The aim of this work was to develop two multimodal radiotracers applicable for both SPECT and PET techniques, which consist of a gold nanoparticle core, a shell involved in radioisotope entrapment, peripherally placed targeting molecules, and biocompatibilizing polymeric sequences. Shell decoration with glucosamine units located in sterically hindered molecular environments is expected to result in nanoparticle accumulation in high-glucose-consuming areas.

View Article and Find Full Text PDF

Malignant fungating wounds (MFW) are severe skin conditions generating tremendous distress in oncological patients with advanced cancer stages because of pain, malodor, exudation, pruritus, inflammation, edema, and bleeding. The classical therapeutic approaches such as surgery, opioids, antimicrobials, and application of different wound dressings are failing in handling pain, odor, and infection control, thus urgently requiring the development of alternative strategies. The aim of this review was to provide an update on the current therapeutic strategies and the perspectives on developing novel alternatives for better malignant wound management.

View Article and Find Full Text PDF

Wound healing-associated difficulties continue to drive biotechnological creativeness into complex grounds. The sophisticated architecture of skin wound sites and the intricate processes involved in the response to the use of regenerative devices play a critical role in successful skin regeneration approaches and their possible outcomes. Due to a plethora of complications involved in wound healing processes as well as the coordination of various cellular mechanisms, biomimetic approaches seems to be the most promising starting ground.

View Article and Find Full Text PDF

Zoledronic acid (ZA) is used in the treatment of various bone pathologies, but it forms complexes with calcium ions present in body fluids, decreasing ZA bioavailability. Thereby, the study first describes the identification of ZA-calcium complexes that form in calcium-rich environments, in order to establish the bioavailable ZA concentration. Then, a new method for quantification of low ZA amounts in milieus that mimics in vivo conditions by using simulated body fluid and calcium sulfate hemihydrate was described.

View Article and Find Full Text PDF

The nontoxicity, worldwide availability and low production cost of cuttlefish bone products qualify them an excellent biocoagulant to treat food industry wastewater. In this study, cuttlefish bone liquid waste from the deproteinization step was used as a biocoagulant to treat food industry wastewater. This work concerns a waste that has never before been investigated.

View Article and Find Full Text PDF

This study may open a new way to obtain the coloration of a polymer during functionalization. Two polyacrylonitrile (PAN) polymers in the form of textile fibers ( and ) were subjected to functionalization treatments in order to improve the dyeing capacity. The functionalizations determined by an organo-hypervalent iodine reagent developed in situ led to fiber coloration without using dyes.

View Article and Find Full Text PDF

Biocompatible hydrophilic polyethylene glycol (PEG) is widely used in biomedical applications, such as drug or gene delivery, tissue engineering or as an antifouling component in biomedical devices. Experimental studies have shown that the size of PEG can weaken polycation-polyanion interactions, like those between branched polyethyleneimine (b-PEI) and DNA in gene carriers, but details of its cause and underlying interactions on the atomic scale are still not clear. To better understand the interaction mechanisms in the formation of polyplexes between b-PEI-PEG based carriers and DNA, we have used a combination of tools and experiments on three multicomponent systems differing in PEG MW.

View Article and Find Full Text PDF

We evaluated in vitro a series of telluride containing compounds bearing the benzenesulfonamide group, as effective inhibitors of the physiologically relevant human (h) expressed Carbonic Anhydrase (CA; EC 4.2.1.

View Article and Find Full Text PDF

A novel DPyDB-C[double bond, length as m-dash]N-18C6 compound was synthesised by linking a pyrene moiety to each phenyl group of dibenzo-18-crown-6-ether, the crown ether, through -HC[double bond, length as m-dash]N- bonds and characterized by FTIR, H-NMR, C-NMR, TGA, and DSC techniques. The quantitative C-NMR analysis revealed the presence of two position isomers. The electronic structure of the DPyDB-C[double bond, length as m-dash]N-18C6 molecule was characterized by UV-vis and fluorescence spectroscopies in four solvents with different polarities to observe particular behavior of isomers, as well as to demonstrate a possible non-bonding chemical association (such as ground- and excited-state associations, namely, to probe if there were forming dimers/excimers).

View Article and Find Full Text PDF

Carbonic anhydrase (CA) is a zinc enzyme that catalyzes the reversible conversion of carbon dioxide to bicarbonate and proton. Currently, CA inhibitors are widely used as antiglaucoma, anticancer, and anti-obesity drugs and for the treatment of neurological disorders. Recently, the potential use of CA inhibitors to fight infections caused by protozoa, fungi, and bacteria has emerged as a new research line.

View Article and Find Full Text PDF

Schistosomiasis is a debilitating infection provoked by parasitic flatworms called schistosomes. The species is endemic in Africa, where it causes intestinal schistosomiasis. Recently, an α-carbonic anhydrase (CA, EC 4.

View Article and Find Full Text PDF
Article Synopsis
  • * The study utilized advanced techniques like Scanning Electron Microscopy and X-ray Spectroscopy to analyze hair samples from healthy individuals and AA patients.
  • * Results indicated that hair affected by AA shows significant structural changes, including surface defects and differences in melanin composition, highlighting the need for better diagnostic methods.
View Article and Find Full Text PDF

A series of benzenesulfonamides incorporating selenazoles with diverse substitution patterns were investigated as inhibitors of six bacterial carbonic anhydrases (CAs, EC 4.2.1.

View Article and Find Full Text PDF

Famotidine, an antiulcer drug belonging to the H antagonists class of pharmacological agents, was recently shown to potently inhibit human (h) and bacterial carbonic anhydrases (CAs, EC 4.2.1.

View Article and Find Full Text PDF

Mixed crosslinked networks of ionic-covalent entanglement type were prepared starting from ternary mixtures of atelocollagen (aK; as fibrillary matrix generator), sodium hyaluronate (NaHyal; a microfibrillation assistant), and oxidized polysaccharides (OxPolys; as both cross-linkers and matrix fillers), and were tested as hydrogels for eukaryotic cell encapsulation. Either oxidized gellan (GellOx) or pullulan (PullOx) were used. An original procedure and optimal hydrogel recipes were developed to encapsulate fibroblasts and adipose-derived stem cells, while preserving their viability and proliferative ability during ex vivo temporarily storage.

View Article and Find Full Text PDF

Transfection of nucleic acid molecules, large enough to interfere with the genetic mechanisms of active cells, can be performed by means of small carriers, able to collectively collaborate in generating cargocomplexes that could be involved in passive mechanisms of cellular uptake. The present work describes the synthesis, characterization, and evaluation of transfection efficacy of a conjugate molecule, which comprises a cyclic siloxane ring (2,4,6,8-tetramethylcyclotetrasiloxane, cD ) as the core, and, on average, 3.76 molecules of 2 kDa polyethyleneimine (PEI) as cationic branches, with an average molecular mass of 7.

View Article and Find Full Text PDF

The present study reports fullerene conjugates that act as efficient binders of double stranded DNA (dsDNA) into cytofriendly polyplexes. The conjugates are designed to generate dendrimeric structures, having C60 as the core and bearing linear or branched PEI and polyethyleneglycol (PEG) arms (∼2 kDa). Simple and reproducible synthesis pathways provided C60-PEI and C60-PEG-PEI conjugates.

View Article and Find Full Text PDF

Minimal amounts of a short-chain bifunctional crosslinker of about 1.3 nm length, the 1,4-butanediol-diglycidyl ether (BDDGE), were used to generate atelocollagen-hyaluronan conjugates in hydrogel state. Two a priori constraints were considered in recipe/procedure developing: (i) working in nondenaturing conditions, and (ii) ensuring a low cytotoxicity of the final product.

View Article and Find Full Text PDF

The paper describes a methodology for preparing monodisperse, water-soluble magnetite nanoparticles, coated with heparin and loaded with 4,5-dihydroxy-9,10-dioxoanthracene-2-carboxylic acid (Rhein), able to be used as a drug delivery system for cancer chemotherapy. Upon preparation, nanoparticles structure and morphology were investigated. The surface charge and the equivalent dimensions of the nanoparticles dispersed in water were measured, as a function of the suspension pH.

View Article and Find Full Text PDF

The toxicity of viologens can be significantly reduced by including them in tight [2]rotaxane structures alongside β-cyclodextrin, thus turning them into candidates of pharmaceutical interest. Here, we report a synthesis pathway for a benign viologen, by capping a small β-cyclodextrin-caged molecule, the 4,4'-bipyridine, with minimal-length presynthesized axle-stopper segments of the propyl-3-pentamethyldisiloxane type. After 90 min from the oral administration to laboratory mice, the product concentration in the bloodstream reaches a value equivalent to 0.

View Article and Find Full Text PDF

The critical stage in producing blends of biomacromolecules consists in the mixing of component solutions to generate homogenous diluted colloidal systems. Simple experimental investigations allow the establishment of the design rules of recipes and the procedures for preparing homogenous and compositionally reproducible mixtures. Starting from purified solutions of atelocollagen, hyaluronan and native gellan, having as low as possible inorganic salts content, initial binary and ternary mixtures can be prepared up to a total dry matter content of 0.

View Article and Find Full Text PDF