Three-dimensional (3D) bioprinting is the use of computer-controlled transfer processes for assembling bioinks (cell clusters or materials loaded with cells) into structures of prescribed 3D organization. The correct bioprinting parameters ensure a fast and accurate bioink deposition without exposing the cells to harsh conditions. This study seeks to optimize pneumatic extrusion-based bioprinting based on hydrogel flow rate and extrusion speed measurements.
View Article and Find Full Text PDFDental implant insertion requires the preparation of the implant bed via surgical drilling. During this stage, irrigation is essential to avoid thermal damage to the surrounding bone. Surgical guides enhance the accuracy of the implant site preparation, but they mask the drilling site, hampering coolant delivery.
View Article and Find Full Text PDFUbiquitous in embryonic development, tissue fusion is of interest to tissue engineers who use tissue spheroids or organoids as building blocks of three-dimensional (3D) multicellular constructs. This review presents mathematical models and computer simulations of the fusion of tissue spheroids. The motivation of this study stems from the need to predict the post-printing evolution of 3D bioprinted constructs.
View Article and Find Full Text PDFThe tumor microenvironment (TME) influences cancer progression. Therefore, engineered TME models are being developed for fundamental research and anti-cancer drug screening. This paper reports the biofabrication of 3D-printed avascular structures that recapitulate several features of the TME.
View Article and Find Full Text PDF