Endogenous hemorphins are being intensively investigated as therapeutic agents in neuropharmacology, and also as biomarkers in mood regulation, inflammation and oncology. The datasets collected herein report physicochemical parameters of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine membranes in the presence of VV-hemorphin-5 (Val-Val-Tyr-Pro-Trp-Thr-Gln) and analogues, modified at position 1 and 7 by the natural amino acid isoleucine or the non-proteinogenic 2-aminoisobutyric, 2,3-diaminopropanoic or 2,4-diaminobutanoic amino acids. These peptides have been previously screened for nociceptive activity and were chosen accordingly.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2022
New analogues of the endogenous heptapeptide VV-hemorphin-5 (valorphin) synthesised by amino acid replacement allow for tailoring the peptide activity in vivo. Investigation of hemorphin-induced alterations of lipid bilayers' physicochemical parameters unravels membrane-mediated mechanisms of interaction with cells and subcellular structures. We studied the effect of modified valorphins with nociceptive activity on the structure, mechanical and electrical properties of lipid membrane models.
View Article and Find Full Text PDFA novel analog of VV-hemorphin-5 containing azobenzene moiety has been synthesized and investigated for anticonvulsant activity in relation to its E → Z photophysical properties activated by long wavelength light at 365 nm. The synthesis was achieved by a modified SPPS by Fmoc-dimerization strategy. The electrochemical behavior before and after UV illumination was investigated using different voltammetric modes.
View Article and Find Full Text PDFThe conditions for formation of the I(3)(-)-starch compound and measuring its absorbance have been found, and a spectrophotometric method has been developed for the determination of the oxygen content in YBa(2)Cu(3)O(y) superconducting bulk samples. The method involves the following stages: a decomposition of the sample in an acid medium in the presence of iodide ions under inert atmosphere; formation of a complex between Cu(II) and glycine; binding the I(3)(-)-complex with a starch and the absorbance measurement of the colored I(3)(-)-starch compound. The coefficient of the active oxygen is calculated by the ratio of the absorbances of two solutions and the method does not require both calibration and precise measuring sample mass.
View Article and Find Full Text PDF