Publications by authors named "Stela Florea"

A hallmark of human and experimental heart failure is deficient sarcoplasmic reticulum (SR) Ca-uptake reflecting impaired contractile function. This is at least partially attributed to dephosphorylation of phospholamban by increased protein phosphatase 1 (PP1) activity. Indeed inhibition of PP1 by transgenic overexpression or gene-transfer of constitutively active inhibitor-1 improved Ca-cycling, preserved function and decreased fibrosis in small and large animal models of heart failure, suggesting that inhibitor-1 may represent a potential therapeutic target.

View Article and Find Full Text PDF

Aims: Impaired sarcoplasmic reticulum (SR) Ca(2+) cycling and depressed contractility, a hallmark of human and experimental heart failure, has been partially attributed to increased protein phosphatase 1 (PP-1) activity, associated with down-regulation of its endogenous inhibitor-1. The levels and activity of inhibitor-1 are reduced in failing hearts, contributing to dephosphorylation and inactivation of key calcium cycling proteins. Therefore, we investigated the mechanisms that mediate decreases in inhibitor-1 by post-transcriptional modification.

View Article and Find Full Text PDF

Rationale: Ischemic heart disease is characterized by contractile dysfunction and increased cardiomyocyte death, induced by necrosis and apoptosis. Increased cell survival after an ischemic insult is critical and depends on several cellular pathways, which have not been fully elucidated.

Objective: To test the hypothesis that the anti-apoptotic hematopoietic lineage substrate-1-associated protein X-1 (HAX-1), recently identified as regulator of cardiac Ca cycling, also may ameliorate cellular injury with an ischemic insult.

View Article and Find Full Text PDF

In cat atrial myocytes, β-adrenergic receptor (β-AR) stimulation exerts profound effects on excitation-contraction coupling and cellular Ca(2+) cycling that are mediated by β(1)- and β(2)-AR subtypes coupled to G proteins (G(s) and G(i)). In this study, we determined the effects of β-AR stimulation on pacing-induced Ca(2+) alternans. Ca(2+) alternans was recorded from single cat atrial myocytes with the fluorescent Ca(2+) indicator indo-1.

View Article and Find Full Text PDF

The activity of protein phosphatase-1 (PP1) inhibitor-1 (I-1) is antithetically modulated by the cAMP-protein kinase A (PKA) and Ca(2+)-protein kinase C (PKC) signaling axes. β-adrenergic (β-AR) stimulation results in PKA-phosphorylation of I-1 at threonine 35 (Thr35) and depressed PP1 activity, while PKC phosphorylation at serine 67 (Ser67) and/or Thr75 increases PP1 activity. In heart failure, pThr35 is decreased while pSer67 and pThr75 are elevated.

View Article and Find Full Text PDF

Aims: Junctin and triadin are calsequestrin-binding proteins that regulate sarcoplasmic reticulum (SR) Ca(2+) release by interacting with the ryanodine receptor. The levels of these proteins are significantly down-regulated in failing human hearts. However, the significance of such decreases is currently unknown.

View Article and Find Full Text PDF

Background: Heat shock proteins (Hsp) are known to enhance cell survival under various stress conditions. In the heart, the small Hsp20 has emerged as a key mediator of protection against apoptosis, remodeling, and ischemia/reperfusion injury. Moreover, Hsp20 has been implicated in modulation of cardiac contractility ex vivo.

View Article and Find Full Text PDF

Cardiac apoptosis has been considered an important contributing factor to heart failure. Several subcellular mechanisms, including increased protein phosphatase 1 activity, have been suggested to induce apoptosis. Protein phosphatase 1 is regulated by an endogenous inhibitor-1 (I-1) that is activated upon phosphorylation at threonine 35 via protein kinase A.

View Article and Find Full Text PDF

Electro-mechanical and Ca alternans is a beat-to-beat alternation of action potential duration, contraction strength and Ca transient amplitude observed in cardiac myocytes at regular stimulation frequency. Ca alternans is a multifactorial process that is causally linked to cardiac arrhythmias. At the cellular level, conditions that increase fractional release from the sarcoplasmic reticulum or reduce diastolic Ca sequestration favor the occurrence of alternans.

View Article and Find Full Text PDF

Oxidative stress imposed by the accumulation of oxygen free radicals (reactive oxygen species, ROS) has profound effects on Ca2+ homeostasis in the vascular endothelium, leading to endothelial dysfunctions and the development of cardiovascular pathologies. We tested the effect of the oxidant and ROS generator tert-butyl-hydroperoxide (tBuOOH) on Ca2+ signaling in single cultured calf pulmonary artery endothelial (CPAE) cells loaded with the fluorescent Ca2+ indicator indo-1. Acute brief (5 min) exposures to tBuOOH had no effect on basal cytosolic free Ca2+ ([Ca2+](i)), agonist (ATP)-induced Ca2+ release from the endoplasmic reticulum (ER) and on Ca(2+) store depletion-dependent capacitative Ca2+ entry (CCE).

View Article and Find Full Text PDF