Bacterial extracellular vesicles (bEVs) are produced by both Gram-negative and Gram-positive bacteria. These biological nanoparticles transport small molecules, nucleic acids, and proteins, enabling communication with both bacterial and mammalian cells. bEVs can evade and disrupt biological barriers, and their lipid membranes protect their cargo from degradation, facilitating long-distance communication in vivo.
View Article and Find Full Text PDFBackground: Venous sinus stenosis can be associated with cerebrovascular disorders. Understanding the role of blood flow disturbances in these disorders is often hampered by the lack of patient-specific flow rates. Our goal was to demonstrate the impact of this by predicting individual flow rates retrospectively from routine manometry and angiography.
View Article and Find Full Text PDFRecent computational and experimental studies of intracranial aneurysms have revealed potential mechanisms of aneurysm bruits and murmurs, driven by flow instabilities rather than by stable pulsatile flow. Some of these studies have been conducted under the assumption of constant flow rate (steady flow); however the validity of this assumption has not been evaluated for high-frequency flow instability, or vibrations from fluid-structure interaction (FSI) simulations. We evaluated the time-averaged wall shear stress, flow instability and vibration amplitude of steady flow simulations, performed at both cycle-averaged and peak-systolic flow rates, and compared these to recent pulsatile FSI simulations.
View Article and Find Full Text PDFExtracellular vesicles (EVs) are produced by all cells in the body. These biological nanoparticles facilitate cellular communication through the transport of diverse cargoes, including small molecules, proteins, and nucleic acids. mRNA cargoes have gained particular interest given their role in the translation of functional proteins.
View Article and Find Full Text PDFPhys Rev Lett
February 2024
Background: Since the 1960s, the origins of intracranial aneurysm bruits and musical murmurs have been debated, with proposed mechanisms ranging from self-excitation (i.e., resonance) by stable pulsatile flow, to vibration caused by unstable (laminar vortex shedding or turbulent) flow.
View Article and Find Full Text PDFBackground Adaptive arterial remodeling caused by flow reduction from downstream stenosis has been demonstrated in animal studies. The authors sought to determine whether inward remodeling from downstream stenosis also occurs in humans and is detectable by ex vacuo expansion of the Rektorzik venous plexus (RVP) surrounding the petrous internal carotid artery. Methods and Results The authors analyzed 214 intracranial magnetic resonance imaging examinations that included contrast-enhanced vessel wall imaging.
View Article and Find Full Text PDFComput Methods Programs Biomed
November 2023
Background And Objective: Vessel geometry and hemodynamics are intrinsically linked, whereby geometry determines hemodynamics, and hemodynamics influence vascular remodeling. Both have been used for testing clinical outcomes, but geometry/morphology generally has less uncertainty than hemodynamics derived from medical image-based computational fluid dynamics (CFD). To provide clinical utility, CFD-based hemodynamic parameters must be robust to modeling errors and/or uncertainties, but must also provide useful information not more-easily extracted from shape alone.
View Article and Find Full Text PDFClinical, experimental, and recent computational studies have demonstrated the presence of wall vibrations in cerebral aneurysms, thought to be induced by blood flow instability. These vibrations could induce irregular, high-rate deformation of the aneurysm wall, and potentially disrupt regular cell behavior and promote deleterious wall remodeling. In order to elucidate, for the first time, the onset and nature of such flow-induced vibrations, in this study we imposed a linearly increasing flow rate on high-fidelity fluid-structure interaction models of three anatomically realistic aneurysm geometries.
View Article and Find Full Text PDFComputational fluid dynamics (CFD) of cerebral venous flows has become popular owing to the possibility of using local hemodynamics and hemoacoustics to help diagnose and plan treatments for venous diseases of the brain. Lumen geometries in low-pressure cerebral veins are different from those in cerebral arteries, often exhibiting fenestrations and flattened or triangular cross section, in addition to constrictions and expansions. These can challenge conventional size-based volume meshing strategies, and the ability to resolve nonlaminar flows.
View Article and Find Full Text PDFIntroduction: Overestimation of intracranial aneurysm neck width by 3D angiography is a recognized clinical problem, and has long been a concern for image-based computational fluid dynamics (CFD). Recently, it was demonstrated that neck overestimation in 3D rotational angiography (3DRA) could be corrected via segmentation with upsampled resolution and gradient enhancement (SURGE). Our aim was to leverage this approach to determine whether and how neck overestimation actually impacts CFD-derived hemodynamics.
View Article and Find Full Text PDFBackground And Objective: Near-wall transport of low-density lipoproteins (LDL) in arteries plays a relevant role in the initiation of atherosclerosis. Although it can be modelled in silico by coupling the Navier-Stokes equations with the 3D advection-diffusion (AD) equation, the associated computational cost is high. As wall shear stress (WSS) represents a first-order approximation of the near-wall velocity in arteries, we aimed at identifying computationally convenient WSS-based quantities to infer LDL near-wall transport based on the underlying near-wall hemodynamics in five models of three human arterial districts (aorta, carotid bifurcations, coronary arteries).
View Article and Find Full Text PDFPrevious experimental flow studies have demonstrated a delay (∼20%) in transition to turbulence for whole blood compared to a Newtonian analog fluid in both a straight pipe and eccentric stenosis model with ridged walls. The impact of wall compliance on the transition to turbulence of blood compared to Newtonian analog and on wall vibration is unknown. The present study employed flexible walls downstream of an eccentric stenosis model and examined the wall vibration during the transition to turbulence with whole blood and a Newtonian analog.
View Article and Find Full Text PDFBackground: Intracranial aneurysm neck width tends to be overestimated when measured with three-dimensional rotational angiography (3DRA) compared with two-dimensional digital subtraction angiography (2D-DSA), owing to high curvature at the neck. This may affect morphological and hemodynamic analysis in support of treatment planning. We present and validate a method for extracting high curvature features, such as aneurysm ostia, during segmentation of 3DRA images.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
June 2022
Purpose: Communicating complex blood flow patterns generated from computational fluid dynamics (CFD) simulations to clinical audiences for the purposes of risk assessment or treatment planning is an ongoing challenge. While attempts have been made to develop new software tools for such clinical visualization of CFD data, these often overlook established medical imaging/visualization practice and data infrastructures. Here, leveraging the clinical ubiquity of the DICOM file format, we present techniques for the translation of CFD data to DICOM series, facilitating interactive visualization in standard radiological software.
View Article and Find Full Text PDFAfter publishing an in-depth study that analyzed the ability of computerized methods to assist or replace human experts in obtaining carotid intima-media thickness (CIMT) measurements leading to correct therapeutic decisions, here the same consortium joined to present technical outlooks on computerized CIMT measurement systems and provide considerations for the community regarding the development and comparison of these methods, including considerations to encourage the standardization of computerized CIMT measurements and results presentation. A multi-center database of 500 images was collected, upon which three manual segmentations and seven computerized methods were employed to measure the CIMT, including traditional methods based on dynamic programming, deformable models, the first order absolute moment, anisotropic Gaussian derivative filters and deep learning-based image processing approaches based on U-Net convolutional neural networks. An inter- and intra-analyst variability analysis was conducted and segmentation results were analyzed by dividing the database based on carotid morphology, image signal-to-noise ratio, and research center.
View Article and Find Full Text PDFRecent studies using high-fidelity computational fluid dynamics (CFD) have revealed high-frequency flow instabilities consistent with clinical reports of bruits and "musical murmurs", which have been speculated to contribute to aneurysm growth and rupture. We hypothesized that harmonic flow instabilities ("spectral bandedness") in aneurysm CFD data may be associated with rupture status. Before testing this hypothesis, we first present a novel method for quantifying and visualizing spectral bandedness in cardiovascular CFD datasets based on musical audio-processing tools.
View Article and Find Full Text PDFBlood, a multiphase fluid comprised of plasma, blood cells, and platelets, is known to exhibit a shear-thinning behavior at low shear rates and near-Newtonian behavior at higher shear rates. However, less is known about the impact of its multiphase nature on the transition to turbulence. In this study, we experimentally determined the critical Reynolds number at which the flow began to transition to turbulence downstream of eccentric stenosis for whole porcine blood and a Newtonian blood analog (water-glycerin mixture).
View Article and Find Full Text PDFHigh-fidelity computational fluid dynamics (HF-CFD) has revealed the potential for high-frequency flow instabilities (aka "turbulent-like" flow) in intracranial aneurysms, consistent with classic in vivo and in vitro reports of bruits and/or wall vibrations. However, HF-CFD has typically been performed on limited numbers of cases, often with unphysiological inflow conditions or focused on sidewall-type aneurysms where flow instabilities may be inherently less prevalent. Here we report HF-CFD of 50 bifurcation aneurysm cases from the open-source Aneurisk model repository.
View Article and Find Full Text PDFAlthough unphysiological wall shear stress (WSS) has become the consensus hemodynamic mechanism for coronary atherosclerosis, the complex biomechanical stimulus affecting atherosclerosis evolution is still undetermined. This has motivated the interest on the contraction/expansion action exerted by WSS on the endothelium, obtained through the WSS topological skeleton analysis. This study tests the ability of this WSS feature, alone or combined with WSS magnitude, to predict coronary wall thickness (WT) longitudinal changes.
View Article and Find Full Text PDFRecent comparisons between experiments and computational fluid dynamics (CFD) simulations of flow in the Food and Drug Administration (FDA) standardized nozzle geometry have highlighted the potential sensitivity of axisymmetric CFD models to small perturbations induced by mesh and inlet velocity, particularly for Reynolds numbers (Re) in the transitional regime. This evokes the classic experiment of Reynolds on transition to turbulence in a straight pipe, which can be delayed, apparently indefinitely, if special care is taken to control for external influences. Such idealized experiments are, however, extremely difficult to perform and, in the context of cardiovascular modeling, belie the "noise" inherent in typical experimental and physiological systems.
View Article and Find Full Text PDF