Publications by authors named "Steinhilber D"

5-Lipoxygenase (5-LO) is a crucial enzyme in the synthesis of the bioactive leukotrienes (LTs) from arachidonic acid (AA), and inhibitors of 5-LO are thought to prevent the untowarded pathophysiological effects of LTs. In this study, we present the molecular pharmacological profile of the novel nonredox-type 5-LO inhibitor CJ-13,610 that was evaluated in various in vitro assays. In intact human polymorphonuclear leukocytes (PMNL), challenged with the Ca(2+)-ionophore A23187, CJ-13,610 potently suppressed 5-LO product formation with an IC(50)=0.

View Article and Find Full Text PDF

1. We have previously shown that 11-keto boswellic acids (11-keto-BAs), the active principles of Boswellia serrata gum resins, activate p38 MAPK and p42/44(MAPK) and stimulate Ca(2+) mobilisation in human polymorphonuclear leucocytes (PMNL). 2.

View Article and Find Full Text PDF

Recently, we reported that in crude enzyme preparations, a monocyte-derived soluble protein (M-DSP) renders 5-lipoxygenase (5-LO) activity Ca2+-dependent. Here we provide evidence that this M-DSP is glutathione peroxidase (GPx)-1. Thus, the inhibitory effect of the M-DSP on 5-LO could be overcome by the GPx-1 inhibitor mercaptosuccinate and by the broad spectrum GPx inhibitor iodoacetate, as well as by addition of 13(S)-hydroperoxy-9Z,11E-octadecadienoic acid (13(S)-HPODE).

View Article and Find Full Text PDF

5-Lipoxygenase (5-LO) mRNA expression in Mono Mac 6 cells is induced by the histone deacetylase inhibitor trichostatin A (TsA). In order to study the effects of TsA and several structurally related compounds such as MD85, D237 and M232 on 5-LO promoter activity, we have analyzed the response of a 5-lipoxygenase (5-LO) promoter luciferase reporter gene construct to histone deacetylase inhibitors in transiently transfected Mono Mac 6 and HeLa cells. We show that the activity of 5-LO promoter constructs comprising the sequences -778 to and of several successive deletions of the 5-LO promoter is strongly increased upon TsA treatment.

View Article and Find Full Text PDF

Nonredox-type 5-lipoxygenase (5-LO) inhibitors such as ZM230487 or L-739.010 potently suppress leukotriene biosynthesis at low cellular peroxide tone. Here, we show that inhibition of 5-LO product formation by nonredox-type 5-LO inhibitors in human isolated polymorphonuclear leukocytes (PMNL) depends on the activation pathway of 5-LO.

View Article and Find Full Text PDF

1,2-Diacylglycerols (DAGs) can prime polymorphonuclear leukocytes (PMNL) for enhanced release of arachidonic acid (AA) and generation of 5-lipoxygenase (5-LO) products upon subsequent agonist stimulation. Here, we demonstrate that in isolated human PMNL, 1-oleoyl-2-acetylglycerol (OAG) functions as a direct agonist stimulating 5-LO product formation (up to 42-fold). OAG caused no release of endogenous AA, but in the presence of exogenous AA, the magnitude of 5-LO product synthesis induced by OAG was comparable to that obtained with the Ca(2+)-ionophore A23187.

View Article and Find Full Text PDF

Leukemic cell lines such as Mono Mac 6 provide an excellent model for studying changes in gene expression during induction of cell differentiation. Mono Mac 6 cells can be induced to differentiate from their immature state to cells resembling morphologically and functionally mature monocytes and macrophages by various stimuli such as calcitriol and transforming growth factor-beta. During differentiation, the expression of differentiation markers such as the cell surface antigen CD14 or other differentiation-related genes such as 5-lipoxygenase are strongly increased.

View Article and Find Full Text PDF

5-Lipoxygenase (5-LO) is the key enzyme in the biosynthesis of proinflammatory leukotrienes. We show that stimulation of polymorphonuclear leukocytes (PMNL), rat basophilic leukemia (RBL)-1, or transfected HeLa cells with arachidonic acid (AA) caused prominent 5-LO product formation that coincided with the activity of extracellular signal-regulated kinases (ERKs) and p38 mitogen-activated protein kinase. 5-LO product formation in AA-stimulated PMNL and RBL-1 cells was independent of Ca2+.

View Article and Find Full Text PDF

The acylphloroglucinol derivative hyperforin is the major lipophilic constituent in the herb Hypericum perforatum (St. John's wort). The aim of the present study was to investigate if hyperforin as well as extracts of H.

View Article and Find Full Text PDF

5-lipoxygenase (5-LO) is the key enzyme in the biosynthesis of proinflammatory leukotrienes. Here, we demonstrate that extracellular signal-regulated kinases (ERKs) can phosphorylate 5-LO in vitro. Efficient phosphorylation required the presence of unsaturated fatty acids and was abolished when Ser-663 was mutated to alanine.

View Article and Find Full Text PDF

5-Lipoxygenase (5-LO) is a Ca2+-stimulated enzyme that initializes the formation of proinflammatory leukotrienes from arachidonic acid (AA). In this report, we demonstrate that a soluble protein of the monocytic cell line Mono Mac 6 confers 5-LO activity Ca2+-dependent in vitro. Thus, in broken cell preparations of human polymorphonuclear leukocytes (PMNL) and rat basophilic leukemia (RBL)-1 cells, 5-LO converted AA (>20 microM) in the absence of Ca2+, whereas Ca2+ was absolutely required for 5-LO activity in broken cell preparations of MM6 cells.

View Article and Find Full Text PDF

5-Lipoxygenase (5-LO) initiates the biosynthesis of proinflammatory leukotrienes from arachidonic acid (AA). Here, we demonstrate that hypertonicity suppresses ionophore-induced 5-LO product formation reversibly in isolated human polymorphonuclear leukocytes (PMNL) and in Mono Mac 6 cells. Hypertonicity blocked the liberation of AA and abrogated translocation of 5-LO to the nuclear membrane.

View Article and Find Full Text PDF

We demonstrated previously that 5-lipoxygenase (5-LO), a key enzyme in leukotriene biosynthesis, can be phosphorylated by p38 MAPK-regulated MAPKAP kinases (MKs). Here we show that mutation of Ser-271 to Ala in 5-LO abolished MK2 catalyzed phosphorylation and clearly reduced phosphorylation by kinases prepared from stimulated polymorphonuclear leukocytes and Mono Mac 6 cells. Compared with heat shock protein 27 (Hsp-27), 5-LO was a weak substrate for MK2.

View Article and Find Full Text PDF

5-Lipoxygenase (5-LO) is the key enzyme in the biosynthesis of proinflammatory leukotrienes. This study showed that various forms of cell stress, such as chemical stress (sodium arsenite), osmotic stress, or heat shock lead to substantial formation of 5-LO products in freshly isolated human polymorphonuclear leukocytes (PMNLs), when exogenous arachidonic acid (10 microM) was present. In parallel, cell stress led to activation of p38 MAPK (mitogen-activated protein kinase) and mitogen-activated protein kinase-activated protein kinases (MAPKAPKs) kinases, which can phosphorylate 5-LO in vitro.

View Article and Find Full Text PDF

The physiologically active form of vitamin D, 1,25-dihydroxyvitamin D(3), plays an important role not only in the establishment and maintenance of calcium metabolism, but also in regulating cell growth and differentiation. Because the clinical usefulness of 1,25-dihydroxyvitamin D(3) is limited by its tendency to cause hypercalcemia, new analogs with a better therapeutic profile have been synthesized, including ZK 156718. We compared the effects of 1,25-dihydroxyvitamin D(3) and ZK 156718 on growth, differentiation, and on p21(Waf1/Cip1) and p27(Kip1) expression in human colon cancer cells (Caco-2).

View Article and Find Full Text PDF

Here we show that extracts of Boswellia serrata gum resins and its constituents, the boswellic acids (BAs), activate the mitogen-activated protein kinases (MAPK) p42(MAPK) and p38 in isolated human polymorphonuclear leukocytes (PMNL). MAPK activation was rapid and transient with maximal activation after 1-2.5 min of exposure and occurred in a dose-dependent manner.

View Article and Find Full Text PDF

The generation of cell lines stably expressing the functional recombinant N-methyl-D-aspartate (NMDA) receptors (NRs) and their use for ligand testing in a simple excitotoxicity model is described. The mouse fibroblast cell line L(tk-) was co-transfected stably with cDNAs encoding the human NR subunits, NR1-1a/NR2A or NR1-1a/NR2B, respectively. The NR expression and functionality in resulting clones have been verified by RT-PCR, Western blotting, immunocytochemistry and fluo-4 calcium imaging.

View Article and Find Full Text PDF

5-lipoxygenase (5-LO), the key enzyme in leukotriene biosynthesis, is expressed in a tissue- and cell differentiation-specific manner. The 5-LO core promoter required for basal promoter activity has a unique (G+C)-rich sequence that contains five tandem Sp1 consensus sequences. The mechanisms involved in the regulation of cell type-specific 5-LO expression are unknown.

View Article and Find Full Text PDF

Butyrate in combination with 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] produces a synergistic effect on cell differentiation of human colon cancer cells (Caco-2). The objective of this study was to confirm the role of the vitamin D receptor (VDR) in butyrate-induced cell differentiation of Caco-2. We studied the effects of the novel VDR antagonist ZK 191732 on butyrate-induced cell differentiation and on p21Waf1/Cip1 expression.

View Article and Find Full Text PDF

Tributyrin, a prodrug of natural butyrate, has been evaluated with an aim to overcome pharmacokinetic drawbacks of natural butyrate as a drug, i.e., its rapid metabolization and inability to achieve pharmacologic concentrations in neoplastic cells.

View Article and Find Full Text PDF

Butyrate, a short-chain fatty acid produced in the colon, as well as its prodrug tributyrin, reduce proliferation and increase differentiation of colon cancer cells. p21(Waf1/Cip1) and p27(Kip1) are negative regulators of cell cycle and are thought to have a key function in the differentiation of various cell lines. We studied the effects of butyrate on differentiation, VDR expression, as well as on p21(Waf1/Cip1) and p27(Kip1) expression in human colon cancer cells (Caco-2).

View Article and Find Full Text PDF

The 5-lipoxygenase (5-LO) pathway in human CD34(+) hematopoietic progenitor cells, which were induced to differentiate into dendritic cells (DCs) by cytokines in vitro and in DCs of lymphoid tissues in situ, was examined. Extracts prepared from HPCs contained low levels of 5-LO or 5-LO-activating protein. Granulocyte-macrophage colony-stimulating factor (GM-CSF) plus tumor necrosis factor-alpha (TNF-alpha) promoted DC differentiation and induced a strong rise in 5-LO and FLAP expression.

View Article and Find Full Text PDF