The leukotriene B4 receptor 2 (BLT2) is a G-protein coupled receptor, which is endogenously activated by 12()-hydroxyheptadeca-5Z,8E,10E-trienoic acid (12-HHT). BLT2 is gaining attention as a potential therapeutic target involved in various pathologies including diabetic wound healing, ophthalmic diseases, and colitis. However, validation of BLT2 as drug target requires chemical probes and pharmacological tools which will allow for application in vivo.
View Article and Find Full Text PDFMany drugs can act on multiple targets or disease pathways, regardless of their original purpose. Drug repurposing involves reevaluating existing compounds for new medical uses. This can include repositioning approved drugs, redeveloping unapproved drugs, or repurposing any chemical, nutraceutical, or biotherapeutic product for new applications.
View Article and Find Full Text PDFThe COVID-19 pandemic has highlighted the lack of effective, ready-to-use antivirals for the treatment of viruses with pandemic potential. The development of a diverse drug portfolio is therefore crucial for pandemic preparedness. Viral macrodomains are attractive therapeutic targets as they are suggested to play an important role in evading the innate host immune response, making them critical for viral pathogenesis.
View Article and Find Full Text PDF5-Lipoxygenase (5-LO), a fatty acid oxygenase, is the central enzyme in leukotriene (LT) biosynthesis, potent arachidonic acid-derived lipid mediators released by innate immune cells, that control inflammatory and allergic responses. In addition, through interaction with 12- and 15-lipoxgenases, the enzyme is involved in the formation of omega-3 fatty acid-based oxylipins, which are thought to be involved in the resolution of inflammation. The expression of 5-LO is frequently deregulated in solid and liquid tumors, and there is strong evidence that the enzyme plays an important role in carcinogenesis.
View Article and Find Full Text PDFVarious disorders are accompanied by histamine-independent itching, which is often resistant to the currently available therapies. Here, it is reported that the pharmacological activation of Slack (Kcnt1, K1.1), a potassium channel highly expressed in itch-sensitive sensory neurons, has therapeutic potential for the treatment of itching.
View Article and Find Full Text PDFFerroptosis is a form of oxidative cell death that is characterized by enhanced lipid peroxidation and mitochondrial impairment. The enzymes acyl-CoA synthetase long-chain family member 4 (ACSL4) and lysophosphatidylcholine acyltransferase (LPCAT) play an essential role in the biosynthesis of polyunsaturated fatty acid (PUFA)-containing phospholipids, thereby providing the substrates for lipid peroxidation and promoting ferroptosis. To examine the impact of mitochondria in ACSL4/LPCAT2-driven ferroptosis, HEK293T cells overexpressing ACSL4 and LPCAT2 (OE) or empty vector controls (LV) were exposed to 1S, 3R-RSL3 (RSL3) for induction of ferroptosis.
View Article and Find Full Text PDFNitro-fatty acids (NFAs) are endogenous lipid mediators causing a spectrum of anti-inflammatory effects by covalent modification of key proteins within inflammatory signaling pathways. Recent animal models of solid tumors have helped demonstrate their potential as anti-tumorigenic therapeutics. This study evaluated the anti-tumorigenic effects of NFAs in colon carcinoma cells and other solid and leukemic tumor cell lines.
View Article and Find Full Text PDFTargeting inflammatory mediators and related signaling pathways may offer a rational strategy for the treatment of cancer. The incorporation of metabolically stable, sterically demanding, and hydrophobic carboranes in dual cycloxygenase-2 (COX-2)/5-lipoxygenase (5-LO) inhibitors that are key enzymes in the biosynthesis of eicosanoids is a promising approach. The di--butylphenol derivatives , , , and represent potent dual COX-2/5-LO inhibitors.
View Article and Find Full Text PDFA library of 43 thiazole derivatives, including 31 previously and 12 newly synthesized in the present study, was evaluated in vitro for their inhibitory properties against bovine pancreatic DNase I. Nine compounds (including three newly synthesized) inhibited the enzyme showing improved inhibitory properties compared to that of the reference crystal violet (IC = 346.39 μM).
View Article and Find Full Text PDFThe presence of inflammatory mediators in the tumor microenvironment, such as cytokines, growth factors or eicosanoids, indicate cancer-related inflammatory processes. Targeting these inflammatory mediators and related signal pathways may offer a rational strategy for the treatment of cancer. This study focuses on the incorporation of metabolically stable, sterically demanding, and hydrophobic dicarba-closo-dodecaboranes (carboranes) into dual cyclooxygenase-2 (COX-2)/5-lipoxygenase (5-LO) inhibitors that are key enzymes in the biosynthesis of eicosanoids.
View Article and Find Full Text PDFProstaglandins Other Lipid Mediat
June 2023
Inhibition of microsomal prostaglandin E synthase-1 (mPGES-1) results in decreased production of proinflammatory PGE and can lead to shunting of PGH into the prostaglandin D (PGD)/15-deoxy-Δ-prostaglandin J (15dPGJ) pathway. 15dPGJ forms Michael adducts with thiol-containing biomolecules such as GSH or cysteine residues on target proteins and is thought to promote resolution of inflammation. We aimed to elucidate the biosynthesis and metabolism of 15dPGJ via conjugation with GSH, to form 15dPGJ-glutathione (15dPGJ-GS) and 15dPGJ-cysteine (15dPGJ-Cys) conjugates and to characterize the effects of mPGES-1 inhibition on the PGD/15dPGJ pathway in mouse and human immune cells.
View Article and Find Full Text PDFBiochem Pharmacol
October 2022
Focused compound libraries are well-established tools for hit identification in drug discovery and chemical probe development. We present the compilation and application of a focused screening library of fatty acid mimetics (FAMs), which are compounds designed to bind the orthosteric site of proteins that endogenously accommodate natural fatty acids and lipid metabolites. This set complies with chemical properties of FAM and was found suitable for use also in cellular setting.
View Article and Find Full Text PDFBiochem Pharmacol
September 2022
Human 5-lipoxygenase (5-LO) is the key enzyme of leukotriene biosynthesis, mostly expressed in leukocytes and thus a crucial component of the innate immune system. In this study, we show that 5-LO, besides its canonical function as an arachidonic acid metabolizing enzyme, is a regulator of gene expression associated with euchromatin. By Crispr-Cas9-mediated 5-LO knockout (KO) in MonoMac6 (MM6) cells and subsequent RNA-Seq analysis, we identified 5-LO regulated genes which could be clustered to immune/defense response, cell adhesion, transcription and growth/developmental processes.
View Article and Find Full Text PDF5-Lipoxygenase (5-LO) is the key enzyme in the formation of pro-inflammatory leukotrienes (LT) which play an important role in a number of inflammatory diseases. Accordingly, 5-LO inhibitors are frequently used to study the role of 5-LO and LT in models of inflammation and cancer. Interestingly, the therapeutic efficacy of these inhibitors is highly variable.
View Article and Find Full Text PDF