Electrical stimulation is a key tool in neuroscience, both in brain mapping studies and in many therapeutic applications such as cochlear, vestibular, and retinal neural implants. Due to safety considerations, stimulation is restricted to short biphasic pulses. Despite decades of research and development, neural implants lead to varying restoration of function in patients.
View Article and Find Full Text PDF. Primarily due to safety concerns, biphasic pulsatile stimulation (PS) is the present standard for electrical excitation of neural tissue with a diverse set of applications. While pulses have been shown to be effective to achieve functional outcomes, they have well-known deficits.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2022
Biphasic pulsatile stimulation is the present standard for neural prosthetic use, and it is used to understand connectivity and functionality of the brain in brain mapping studies. While pulses have been shown to drive behavioral changes, such as biasing decision making, they have deficits. For example, cochlear implants restore hearing but lack the ability to restore pitch perception.
View Article and Find Full Text PDFUnderstanding how super-massive black holes form and grow in the early Universe has become a major challenge since it was discovered that luminous quasars existed only 700 million years after the Big Bang. Simulations indicate an evolutionary sequence of dust-reddened quasars emerging from heavily dust-obscured starbursts that then transition to unobscured luminous quasars by expelling gas and dust. Although the last phase has been identified out to a redshift of 7.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
Despite being able to restore speech perception with 99% success rate, cochlear implants cannot successfully restore pitch perception or music appreciation. Studies suggest that if auditory neurons were activated with fine timing closer to that of natural responses pitch would be restored. Predicting the timing of cochlear responses requires detailed biophysical models of sound transmission, inner hair cell responses, and outer hair cell responses.
View Article and Find Full Text PDFIn contrast to the conventional pulsatile neuromodulation that excites neurons, galvanic or direct current stimulation can excite, inhibit, or sensitize neurons. The vestibular system presents an excellent system for studying galvanic neural interface due to the spontaneously firing afferent activity that needs to be either suppressed or excited to convey head motion sensation. We determine the cellular mechanisms underlying the beneficial properties of galvanic vestibular stimulation (GVS) by creating a computational model of the vestibular end organ that elicits all experimentally observed response characteristics to GVS simultaneously.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2020
Pulsatile electrical stimulation is used in neural prostheses such as the vestibular prosthesis. In a healthy vestibular system, head motion is encoded by changes in the firing rates of afferents around their spontaneous baseline rate. For people suffering from bilateral vestibular disorder (BVD), head motion no longer modulates firing rate.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2020
People make decisions multiple times on a daily basis. However, some decisions are easier to make than others and perhaps require more attention to ensure a positive outcome. During gambling, one should attempt to compute the expected rewards and risks associated with decisions.
View Article and Find Full Text PDFObjective: Stimulation of neural activity is an important scientific and clinical tool, causally testing hypotheses and treating neurodegenerative and neuropsychiatric diseases. However, current stimulation approaches cannot flexibly control the pattern of activity in populations of neurons. To address this, we developed a model-free, adaptive, closed-loop stimulation (ACLS) system that learns to use multi-site electrical stimulation to control the pattern of activity of a population of neurons.
View Article and Find Full Text PDFBackground: Direct electrical stimulation of the human brain has been used to successfully treat several neurological disorders, but the precise effects of stimulation on neural activity are poorly understood. Characterizing the neural response to stimulation, however, could allow clinicians and researchers to more accurately predict neural responses, which could in turn lead to more effective stimulation for treatment and to fundamental knowledge regarding neural function.
Objective: Here we use a linear systems approach in order to characterize the response to electrical stimulation across cortical locations and then to predict the responses to novel inputs.
Annu Int Conf IEEE Eng Med Biol Soc
July 2019
Electrical brain stimulation is used clinically to target pathological regions of the brain for treatment of diseases, such as Parkinson's disease, epilepsy and depression. Conventional treatments involve chronic implants that disrupt activity through a fixed periodic train of pulses or bursts of pulses applied to the affected region. However, stimulating one region of the brain necessarily affects other structurally and/or functionally connected areas.
View Article and Find Full Text PDFAt redshift z = 2, when the Universe was just three billion years old, half of the most massive galaxies were extremely compact and had already exhausted their fuel for star formation. It is believed that they were formed in intense nuclear starbursts and that they ultimately grew into the most massive local elliptical galaxies seen today, through mergers with minor companions, but validating this picture requires higher-resolution observations of their centres than is currently possible. Magnification from gravitational lensing offers an opportunity to resolve the inner regions of galaxies.
View Article and Find Full Text PDFDevelopmental processes in multicellular organisms occur in fluctuating environments and are prone to noise, yet they produce complex patterns with astonishing reproducibility. We measure the left-right and inter-individual precision of bilaterally symmetric fly wings across the natural range of genetic and environmental conditions and find that wing vein patterns are specified with identical spatial precision and are reproducible to within a single-cell width. The early fly embryo operates at a similar degree of reproducibility, suggesting that the overall spatial precision of morphogenesis in Drosophila performs at the single-cell level.
View Article and Find Full Text PDF