Publications by authors named "Steinberg V"

Inertia-less viscoelastic channel flow displays a supercritical nonnormal mode elastic instability due to finite-size perturbations despite its linear stability. The nonnormal mode instability is determined mainly by a direct transition from laminar to chaotic flow, in contrast to normal mode bifurcation leading to a single fastest-growing mode. At higher velocities, transitions to elastic turbulence and further drag reduction flow regimes occur accompanied by elastic waves in three flow regimes.

View Article and Find Full Text PDF

An addition of long-chain, flexible polymers strongly affects laminar and turbulent Newtonian flows. In laminar inertia-less viscoelastic channel flow, the supercritical elastic instability of non-normal eigenmodes of non-Hermitian equations at finite-size perturbations leads to chaotic flow. Then three chaotic flow regimes: transition, elastic turbulence (ET), and drag reduction (DR), accompanied by elastic waves, are observed and characterized.

View Article and Find Full Text PDF

DNA-modifying technologies, such as the CRISPR-Cas9 system, are promising tools in the field of gene and cell therapies. However, high and prolonged expression of DNA-modifying enzymes may cause cytotoxic and genotoxic side effects and is therefore unwanted in therapeutic approaches. Consequently, development of new and potent short-term delivery methods is of utmost importance.

View Article and Find Full Text PDF

Originally, Kelvin-Helmholtz instability (KHI) describes the growth of perturbations at the interface separating counterpropagating streams of Newtonian fluids of different densities with heavier fluid at the bottom. Generalized KHI is also used to describe instability of free shear layers with continuous variations of velocity and density. KHI is one of the most studied shear flow instabilities.

View Article and Find Full Text PDF

Polymer molecules in a flow undergo a coil-stretch phase transition on an increase of the velocity gradients. Model-independent identification and characterization of the transition in a random flow has been lacking so far. Here we suggest to use the entropy of the extension statistics as a proper measure due to strong fluctuations around the transition.

View Article and Find Full Text PDF

We report the scaling relations between the exponents of the power-law decays of kinetic and elastic energies, pressure, as well as torque fluctuations in elastic turbulence (ET). The relations are derived by estimating that the divergent part of the elastic stress is much larger than its vortical part, and its contribution into the full elastic stress is dominant in the range of the power spectrum amplitudes observed experimentally in ET. The estimate is in line with polymer stretching by flow: the polymers are stretched mostly by the divergent part associated with a strain rate, whereas a rotational, or vortical, flow plays a minor role in the polymer stretching.

View Article and Find Full Text PDF

Electron transport in two-dimensional conducting materials such as graphene, with dominant electron-electron interaction, exhibits unusual vortex flow that leads to a nonlocal current-field relation (negative resistance), distinct from the classical Ohm's law. The transport behavior of these materials is best described by low Reynolds number hydrodynamics, where the constitutive pressure-speed relation is Stoke's law. Here we report evidence of such vortices observed in a viscous flow of Newtonian fluid in a microfluidic device consisting of a rectangular cavity-analogous to the electronic system.

View Article and Find Full Text PDF

Speed of sound waves in gases and liquids are governed by the compressibility of the medium. There exists another type of non-dispersive wave where the wave speed depends on stress instead of elasticity of the medium. A well-known example is the Alfven wave, which propagates through plasma permeated by a magnetic field with the speed determined by magnetic tension.

View Article and Find Full Text PDF

Chaotic flows drive mixing and efficient transport in fluids, as well as the associated beautiful complex patterns familiar to us from our every day life experience. Generating such flows at small scales where viscosity takes over is highly challenging from both the theoretical and engineering perspectives. This can be overcome by introducing a minuscule amount of long flexible polymers, resulting in a chaotic flow dubbed 'elastic turbulence'.

View Article and Find Full Text PDF

In this paper we investigate the in vitro dynamics of a single rabbit red blood cell (RBC) in a planar linear flow as a function of a shear stress σ and the dynamic viscosity of outer fluid η_{o}. A linear flow is a generalization of previous studies dynamics of soft objects including RBC in shear flow and is realized in the experiment in a microfluidic four-roll mill device. We verify that the RBC stable orientation dynamics is found in the experiment being the in-shear-plane orientation and the RBC dynamics is characterized by observed three RBC dynamical states, namely tumbling (TU), intermediate (INT), and swinging (SW) [or tank-treading (TT)] on a single RBC.

View Article and Find Full Text PDF

Dilute polymer solutions are known to exhibit purely elastic instabilities even when the fluid inertia is negligible. Here we report the quantitative evidence of two consecutive oscillatory elastic instabilities in an elongation flow of a dilute polymer solution as realized in a T-junction geometry with a long recirculating cavity. The main result reported here is the observation and characterization of the first transition as a forward Hopf bifurcation resulted in a uniformly oscillating state due to breaking of time translational invariance.

View Article and Find Full Text PDF

We report unexpected results of a drastic difference in the transition to fully developed turbulent and turbulent drag reduction (TDR) regimes and in their properties in a von Karman swirling flow with counter-rotating disks of water-based polymer solutions for viscous (by smooth disks) as well as inertial (by bladed disks) forcing and by tracking just torque Γ(t) and pressure p(t) . For the viscous forcing, just a single TDR regime is found with the transition values of the Reynolds number (Re) Re turb c =Re TDR c ≃(4.8±0.

View Article and Find Full Text PDF

Purpose: To determine the effects of catheter-based peripheral sympathetic denervation (CPSD) on peripheral artery sympathetic tone and peripheral microperfusion (PMP).

Materials And Methods: The effects of bilateral CPSD in common iliac arteries on PMP of the biceps femoris were determined in pigs using contrast-enhanced ultrasound, and mean transit time (mTT) and wash-in rate (WiR) were calculated during steady-state infusion of INN-sulfur-hexafluoride. Measurements were performed bilaterally at rest and during infusion of adenosine 70 μg/kg/min after unilateral moderate left external iliac artery stenosis.

View Article and Find Full Text PDF
Article Synopsis
  • First experimental observations of compound vesicles in a microfluidic four-roll mill reveal more complex dynamics compared to unilamellar vesicles.
  • The study identifies a new swinging motion of the inner vesicle during the trembling (TR) phase, confirming simulation predictions.
  • The inner and outer vesicles can exhibit different dynamical behaviors that can be either synchronized or unsynchronized, depending on their filling factors, making them useful models for studying blood cell dynamics in flow.
View Article and Find Full Text PDF

We review the dynamical behavior of giant fluid vesicles in various types of external hydrodynamic flow. The interplay between stresses arising from membrane elasticity, hydrodynamic flows, and the ever present thermal fluctuations leads to a rich phenomenology. In linear flows with both rotational and elongational components, the properties of the tank-treading and tumbling motions are now well described by theoretical and numerical models.

View Article and Find Full Text PDF

Objective: Noninvasive measurement of peripheral muscle microperfusion could potentially improve diagnosis, management, and treatment of peripheral arterial disease (PAD) and thus improve patient care. Contrast-enhanced ultrasound (CEUS) as a noninvasive diagnostic tool allows quantification of muscle perfusion. Increasing data on bolus technique CEUS reflecting microperfusion are becoming available, but only limited data on steady-state CEUS for assessment of muscle microperfusion are available.

View Article and Find Full Text PDF

A novel noise amplification mechanism resulting from the interaction of thermal fluctuations and nonlinear vesicle dynamics is reported. It is observed in a time-dependent vesicle state called trembling (TR). High spatial resolution and very long time series of TR compared to the vesicle period allow us to quantitatively analyze the generation and amplification of spatial and temporal modes of the vesicle shape perturbations.

View Article and Find Full Text PDF

A polymer solution partially filling a rotating horizontal drum undergoes an elastically driven instability at low Reynolds numbers. This instability manifests itself through localized plumelike bursts, perturbing the free liquid surface. Here we present an expanded experimental account regarding the dynamics of individual plumes and the statistics pertaining to the complex collective interaction between plumes, which leads to plume coagulation.

View Article and Find Full Text PDF

We report the experimental studies on interaction of two vesicles trapped in a microfluidic four-roll mill, where a plane linear flow is realized. We found that the dynamics of a vesicle in tank-treading motion is significantly altered by the presence of another vesicle at separation distances up to 3.2-3.

View Article and Find Full Text PDF
Elastic turbulence in a curvilinear channel flow.

Phys Rev E Stat Nonlin Soft Matter Phys

November 2011

We report detailed quantitative studies of elastic turbulence in a curvilinear channel flow in a dilute polymer solution of high molecular weight polyacrylamide in a high viscosity water-sugar solvent. Detailed studies of the average and rms velocity and velocity gradients profiles reveal the emergence of a boundary layer associated with the nonuniform distribution of the elastic stresses across the channel. The characteristic boundary width is independent of the Weissenberg number Wi and proportional to the channel width, which is consistent with the findings our early investigations of the boundary layer in elastic turbulence in different flow geometries.

View Article and Find Full Text PDF

Recently, we showed chronic hepatitis C to be associated with increased expression of HLA-E and identified peptide hepatitis C virus (HCV) core amino acids 35-44 as a ligand for HLA-E that stabilizes HLA-E expression, favoring inhibition of natural killer cell cytotoxicity. Here we describe HLA-E-restricted recognition of peptide HCV core amino acids 35-44 by CD8(+) T cells. Frequency of HLA-E-restricted responses was significantly higher in patients homozygous for the HLA-E(R) allele (60% vs 38%; P = .

View Article and Find Full Text PDF

An approach to quantitatively study vesicle dynamics as well as biologically-related micro-objects in a fluid flow, which is based on the combination of a dynamical trap and a control parameter, the ratio of the vorticity to the strain rate, is suggested. The flow is continuously varied between rotational, shearing, and elongational in a microfluidic 4-roll mill device, the dynamical trap, that allows scanning of the entire phase diagram of motions, i.e.

View Article and Find Full Text PDF

Injected power P and pressure p fluctuations in a swirling flow of polymer solutions in a wide range of polymer concentrations c in elastic turbulence regime show non-Gaussian statistics that strongly resemble statistical behavior of P and p in hydrodynamic turbulence. Together with this fact, weak dependence of the statistics of rescaled variables on c may suggest that there are universal mechanisms determining the intermittent statistics of P and p. We also show that the study of the statistics of p provides a way to study statistics of the elastic stresses in elastic turbulence otherwise currently unattainable.

View Article and Find Full Text PDF

We report the first experimental phase diagram of vesicle dynamical states in a shear flow presented in a space of two dimensionless parameters suggested recently by V. Lebedev et al. To reduce errors in the control parameters, 3D geometrical reconstruction and determination of the viscosity contrast of a vesicle in situ in a plane Couette flow device prior to the experiment are developed.

View Article and Find Full Text PDF

The aim of this study was to investigate the possible participation of fibroblast growth factor (FGF) family members (FGF1, FGF2 and FGF7 and their receptors) in porcine follicles (polyovulatory species) under special consideration for FGF2 during final growth. A classification of follicles was done by size and follicular fluid content of oestradiol-17beta, progesterone and prostaglandin F2alpha. The mRNA expression of examined factors was analysed by real-time PCR.

View Article and Find Full Text PDF