Publications by authors named "Steinbacher P"

Background: A precise determination of time since death plays a major role in forensic routine. Currently available techniques for estimating the postmortem interval (PMI) are restricted to specific time periods or cannot be applied for individual case-specific reasons. During recent years, it has been repeatedly demonstrated that Western blot analysis of postmortem muscle protein degradation can substantially contribute to overcome these limitations in cases with different background.

View Article and Find Full Text PDF

The delimitation of the postmortem interval (PMI) is of utmost importance in forensic science. It is especially difficult to determine the PMI in advanced decomposition stages and/or when dead bodies are found under uncommon circumstances, such as tents, or other (semi-) enclosed environments. In such cases, especially when insect access is restricted, morphological assessment of body decomposition is one of the remaining approaches for delimitation of the PMI.

View Article and Find Full Text PDF

If a dead body is discovered in water, it nearly always raises the question about the cause of death, often associated with the persistent problem to differentiate between a drowning incident and post-mortem immersion. In numerous cases, a reliable confirmation of death by drowning is often only possible by a combination of diagnoses obtained from autopsy and additional investigations. As to the latter, the use of diatoms has been suggested (and debated) since decades.

View Article and Find Full Text PDF

The analysis of postmortem protein degradation has become of large interest for the estimation of the postmortem interval (PMI). Although several techniques have been published in recent years, protein degradation-based techniques still largely did not exceed basic research stages. Reasons include impractical and complex sampling procedures, as well as highly variable protocols in the literature, making it difficult to compare results.

View Article and Find Full Text PDF

The turnover of the epidermis beginning with the progenitor cells in the basal layer to the fully differentiated corneocytes is tightly regulated by calcium. Calcium more than anything else promotes the differentiation of keratinocytes which implies the need for a calcium gradient with low concentrations in the stratum basale and high concentrations in the stratum granulosum. One of the hallmarks of skin aging is a collapse of this gradient that has a direct impact on the epidermal fitness.

View Article and Find Full Text PDF

The present review provides an overview of the current research status on the effects of influencing factors on postmortem protein degradation used to estimate the PMI (postmortem interval). Focus was set on characteristics of internal and external influencing factors and the respective susceptibility and/or robustness of protein degradation. A systematic literature search up to December 2020 was conducted on the effect of influencing factors investigated in the context of postmortem protein degradation in the tissues of animals and humans using the scientific databases PubMed and Google Scholar, as well as the reference lists of eligible articles.

View Article and Find Full Text PDF

The estimation of the postmortem interval (PMI) is of critical importance in forensic routine. The most frequently applied methods, however, are all restricted to specific time periods or must be excluded under certain circumstances. In the last years it has been shown that the analysis of muscle protein degradation has the potential to contribute to according delimitations in practice.

View Article and Find Full Text PDF

Estimation of the postmortem interval in advanced postmortem stages is a challenging task. Although there are several approaches available for addressing postmortem changes of a (human) body or its environment (ecologically and/or biochemically), most are restricted to specific timeframes and/or individual and environmental conditions. It is well known, for instance, that buried bodies decompose in a remarkably different manner than on the ground surface.

View Article and Find Full Text PDF

We provide a systematic review of the literature to evaluate the current research status of protein degradation-based postmortem interval (PMI) estimation. Special attention is paid to the applicability of the proposed approaches/methods in forensic routine practice. A systematic review of the literature on protein degradation in tissues and organs of animals and humans was conducted.

View Article and Find Full Text PDF

In recent years, protein decomposition has become of increasing interest for the use in forensic estimation of the postmortem interval (PMI). Especially skeletal muscle tissue has proven to be a prime target tissue, among other reasons, due to its large abundance in the human body. In this regard, it is important to know whether there are any intra- and intermuscular differences in the behavior of protein degradation.

View Article and Find Full Text PDF

Estimating the postmortem interval (PMI) is one of the major tasks and a continuous challenge in forensic pathology. It is often an exclusion process of available methods, which ultimately can lead to an unsatisfactory outcome due to poor reliability. This problem is most acute in the late PMI, when decomposition proceeds and some methods (such as rigor, livor, and algor mortis) are no longer applicable.

View Article and Find Full Text PDF

Purpose: Skeletal muscle growth and regeneration rely on muscle stem cells, called satellite cells. Specific transcription factors, particularly PAX7, are key regulators of the function of these cells. Knockout of this factor in mice leads to poor postnatal survival; however, the consequences of a lack of PAX7 in humans have not been established.

View Article and Find Full Text PDF

The assessment of postmortem degradation of skeletal muscle proteins has emerged as a novel approach to estimate the time since death in the early to mid-postmortem phase (approximately 24 h postmortem (hpm) to 120 hpm). Current protein-based methods are limited to a small number of skeletal muscle proteins, shown to undergo proteolysis after death. In this study, we investigated the usability of a target-based and unbiased system-wide protein analysis to gain further insights into systemic postmortem protein alterations and to identify additional markers for postmortem interval (PMI) delimitation.

View Article and Find Full Text PDF

Ecotype pairs provide well-suited model systems for study of intraspecific phenotypical diversification of animals. However, little is still known about the processes that account for the development of different forms and sizes within a species, particularly in teleosts. Here, embryos of a normal-growing 'large' form and a dwarf form of whitefish Coregonus lavaretus were incubated at two temperatures that are usually experienced at their own spawning sites (2°C for the normal and 6°C for the dwarf form).

View Article and Find Full Text PDF

A most precise determination of the postmortem interval (PMI) is a crucial aspect in forensic casework. Although there are diverse approaches available to date, the high heterogeneity of cases together with the respective postmortal changes often limit the validity and sufficiency of many methods. Recently, a novel approach for time since death estimation by the analysis of postmortal changes of muscle proteins was proposed.

View Article and Find Full Text PDF

Awareness of postmortem degradation processes in a human body is fundamental to develop methods for forensic time since death estimation (TDE). Currently, applied approaches are all more or less limited to certain postmortem phases, or have restrictions on behalf of circumstances of death. Novel techniques, however, rarely exceed basic research phases due to various reasons.

View Article and Find Full Text PDF

Background: Muscle injuries are among the most common sports-related lesions in athletes; however, optimal treatment remains obscure. Extracorporeal shock wave therapy (ESWT) may be a promising approach in this context, because it has gained increasing importance in tissue regeneration in various medical fields.

Hypothesis: ESWT stimulates and accelerates regenerative processes of acute muscle injuries.

View Article and Find Full Text PDF

Forensic estimation of time since death relies on diverse approaches, including measurement and comparison of environmental and body core temperature and analysis of insect colonization on a dead body. However, most of the applied methods have practical limitations or provide insufficient results under certain circumstances. Thus, new methods that can easily be implemented into forensic routine work are required to deliver more and discrete information about the postmortem interval (PMI).

View Article and Find Full Text PDF

Introduction: The propagation of pathogens resistant to antibiotics around the globe has induced an urgent call for action: alternatives to conventional antibiotic therapy have to be developed to prevent a post-antibiotic catastrophe. This study focuses on the enhancement of Photodynamic Inactivation (PDI) of Gram(+) versus Gram(-) bacteria comparing a cationic derivative of curcumin (SACUR-3) to curcumin bound to polyvinylpyrrolidone (PVP-CUR) using an ex vivo porcine skin model to simulate an application on the human skin and foodstuff.

Experimental: Porcine skin samples were inoculated with either Staphylococcus aureus or Escherichia coli and treated with either SACUR-3 or PVP-CUR at concentrations of 50 or 100 μM, respectively.

View Article and Find Full Text PDF

Estimating the time since death is a very important aspect in forensic sciences which is pursued by a variety of methods. The most precise method to determine the postmortem interval (PMI) is the temperature method which is based on the decrease of the body core temperature from 37 °C. However, this method is only useful in the early postmortem phase (~0-36 h).

View Article and Find Full Text PDF

Background: COPD is a progressive disease of the airways that is characterized by neutrophilic inflammation, a condition known to promote the excessive formation of neutrophil extracellular traps (NETs). The presence of large amounts of NETs has recently been demonstrated for a variety of inflammatory lung diseases including cystic fibrosis, asthma and exacerbated COPD.

Objective: We test whether excessive NET generation is restricted to exacerbation of COPD or whether it also occurs during stable periods of the disease, and whether NET presence and amount correlates with the severity of airflow limitation.

View Article and Find Full Text PDF

Extracellular traps (ETs) are reticulate structures of extracellular DNA associated with antimicrobial molecules. Their formation by phagocytes (mainly by neutrophils: NETs) has been identified as an essential element of vertebrate innate immune defense. However, as ETs are also toxic to host cells and potent triggers of autoimmunity, their role between pathogen defense and human pathogenesis is ambiguous, and they contribute to a variety of acute and chronic inflammatory diseases.

View Article and Find Full Text PDF

PGC-1α (peroxisome proliferator-activated receptor γ co-activator 1α) is an important regulator of mitochondrial biogenesis and a master regulator of enzymes involved in oxidative phosphorylation. Recent evidence demonstrated that the Gly482Ser single nucleotide polymorphism (SNP) in the PGC-1α gene affects insulin sensitivity, blood lipid metabolism and binding to myocyte enhancer factor 2 (MEF2). Individuals carrying this SNP were shown to have a reduced cardiorespiratory fitness and a higher risk to develop type 2 diabetes.

View Article and Find Full Text PDF

It is well established that muscle contractions during exercise lead to elevated levels of reactive oxygen species (ROS) in skeletal muscle. These highly reactive molecules have many deleterious effects, such as a reduction of force generation and increased muscle atrophy. Since the discovery of exercise-induced oxidative stress several decades ago, evidence has accumulated that ROS produced during exercise also have positive effects by influencing cellular processes that lead to increased expression of antioxidants.

View Article and Find Full Text PDF