Publications by authors named "Stein O"

Online tuning of particle accelerators is a complex optimisation problem that continues to require manual intervention by experienced human operators. Autonomous tuning is a rapidly expanding field of research, where learning-based methods like Bayesian optimisation (BO) hold great promise in improving plant performance and reducing tuning times. At the same time, reinforcement learning (RL) is a capable method of learning intelligent controllers, and recent work shows that RL can also be used to train domain-specialised optimisers in so-called reinforcement learning-trained optimisation (RLO).

View Article and Find Full Text PDF

This study explores the greenhouse gas (GHG) fluxes of nitrous oxide (NO), methane (CH) and carbon dioxide (CO) from a two-stage, cold-climate vertical-flow treatment wetland (TW) treating ski area wastewater at 3 °C average water temperature. The system is designed like a modified Ludzack-Ettinger process with the first stage a partially saturated, denitrifying TW followed by an unsaturated nitrifying TW and recycle of nitrified effluent. An intermittent wastewater dosing scheme was established for both stages, with alternating carbon-rich wastewater and nitrate-rich recycle to the first stage.

View Article and Find Full Text PDF

Introduction: In recent year, many attempts have been made to provide patients with alternatives to psychiatric hospitalization during acute distress. Although several hospitalization alternatives have been offered, most of them still require patients to be distanced from their families, friends, and the social environment.

Methods: In this report we describe the implementation of a novel approach to psychiatric care termed "Technologically assisted Intensive Home Treatment", where patients arriving to emergency settings are directed to home care with technological aids that enable close monitoring and ongoing contact with their therapists.

View Article and Find Full Text PDF

Background: Depression and anxiety are commonly experienced among gay, bisexual and other men-who-have-sex-with-men (gbMSM). We explored factors associated with improvements in mental health symptoms among gbMSM with abnormal depression and anxiety scores over a period of four years, in Vancouver, Canada.

Methods: Sexually active gbMSM ≥16 years of age were recruited using respondent-driven sampling from February 2012 to February 2015.

View Article and Find Full Text PDF

Sucrose synthase (SuSy) and fructokinase (FRK) work together to control carbohydrate flux in sink tissues. SuSy cleaves sucrose into fructose and UDP-glucose; whereas FRK phosphorylates fructose. Previous results have shown that suppression of the genes by SUS-RNAi alters auxin transport in the shoot apical meristems of tomato plants and affects cotyledons and leaf structure; whereas antisense suppression of affects vascular development.

View Article and Find Full Text PDF

The hypocotyls of germinating seedlings elongate in a search for light to enable autotrophic sugar production. Upon exposure to light, photoreceptors that are activated by blue and red light halt elongation by preventing the degradation of the hypocotyl-elongation inhibitor HY5 and by inhibiting the activity of the elongation-promoting transcription factors PIFs. The question of how sugar affects hypocotyl elongation and which cell types stimulate and stop that elongation remains unresolved.

View Article and Find Full Text PDF

We propose a new deep learning approach for medical imaging that copes with the problem of a small training set, the main bottleneck of deep learning, and apply it for classification of healthy and cancer cell lines acquired by quantitative phase imaging. The proposed method, called transferring of pre-trained generative adversarial network (TOP-GAN), is hybridization between transfer learning and generative adversarial networks (GANs). Healthy cells and cancer cells of different metastatic potential have been imaged by low-coherence off-axis holography.

View Article and Find Full Text PDF

Sucrose is the end product of photosynthesis and the primary sugar transported in the phloem of most plants. Sucrose synthase (SuSy) is a glycosyl transferase enzyme that plays a key role in sugar metabolism, primarily in sink tissues. SuSy catalyzes the reversible cleavage of sucrose into fructose and either uridine diphosphate glucose (UDP-G) or adenosine diphosphate glucose (ADP-G).

View Article and Find Full Text PDF

Two-photon polymerization (2PP), which is a three-dimensional micro/nano-scale additive manufacturing process, is used to fabricate component for small custom experimental packages (“targets”) to support laser-driven, high-energy-density physics research. Of particular interest is the use of 2PP to deterministically print millimeter-scale, low-density, and low atomic number (CHO) polymer matrices (“foams”). Deformation during development and drying of the foam structures remains a challenge when using certain commercial acrylic photo-resins.

View Article and Find Full Text PDF

Sucrose, a glucose-fructose disaccharide, is the main sugar transported in the phloem of most plants and is the origin of most of the organic matter. Upon arrival in sink tissues, the sucrose must be cleaved by invertase or sucrose synthase. Both sucrose-cleaving enzymes yield free fructose, which must be phosphorylated by either fructokinase (FRK) or hexokinase (HXK).

View Article and Find Full Text PDF

Metabolic enzymes have been found to play roles in plant development. Sucrose synthase (SUS) is one of the two enzyme families involved in sucrose cleavage in plants. In tomato, six SUS genes have been found.

View Article and Find Full Text PDF

This study aimed to investigate the effects of constructed wetland design (unsaturated, saturated and aerated saturated) and plant species (Juncus, Typha, Berula, Phragmites and Iris) on the mass removal and removal kinetics of the pharmaceutical ibuprofen. Planted systems had higher ibuprofen removal rates (29%-99%) than in the unplanted ones (15%-85%) in all designs. The use of forced aeration improved ibuprofen removal only in the unplanted mesocosms.

View Article and Find Full Text PDF

Sucrose (a disaccharide made of glucose and fructose) is the primary carbon source transported to sink organs in many plants. Since fructose accounts for half of the hexoses used for metabolism in sink tissues, plant fructokinases (FRKs), the main fructose-phosphorylating enzymes, are likely to play a central role in plant development. However, to date, their specific functions have been the subject of only limited study.

View Article and Find Full Text PDF

Plants have two kinds of fructokinases (FRKs) that catalyze the key step of fructose phosphorylation, cytosolic and plastidic. The major cytosolic tomato FRK, SlFRK2, is essential for the development of xylem vessels. In order to study the role of SlFRK3, which encodes the only plastidic FRK, we generated transgenic tomato (Solanum lycopersicon) plants with RNAi suppression of SlFRK3 as well as plants expressing beta-glucoronidase (GUS) under the SlFRK3 promoter.

View Article and Find Full Text PDF

This study investigated the temporal pattern of brain response to emotional stimuli during 28 days of alprazolam treatment among patients with generalized anxiety disorder (GAD) randomized 2:1 to drug or placebo in a double-blind design. Functional magnetic resonance imaging scans obtained during an emotion face matching task (EFMT) and an affective stimulus expectancy task (STIMEX) were performed at baseline, one hour after initial drug administration and 28 days later. Alprazolam significantly reduced scores on the Hamilton Anxiety Scale and the Penn State Worry Questionnaire after one week and 28 days of treatment.

View Article and Find Full Text PDF

Treatment wetlands (TWs) efficiently remove many pollutants including a several log order reduction of pathogens from influent to effluent; however, there is evidence to suggest that pathogen cells are sequestered in a subsurface wetland and may remain viable months after inoculation. Escherichia coli is a common pathogen in domestic and agricultural wastewater and the O157:H7 strain causes most environmental outbreaks in the United States. To assess attachment of E.

View Article and Find Full Text PDF

In this study, a mathematical biofilm reactor model based on the structure of the Constructed Wetland Model No.1 (CWM1) coupled to AQUASIM's biofilm reactor compartment has been used to reproduce the sequence of transformation and degradation of organic matter, nitrogen and sulphur observed in a set of constructed wetland mesocosms and to elucidate the development over time of microbial species as well as the biofilm thickness of a multispecies bacterial biofilm in a subsurface constructed wetland. Experimental data from 16 wetland mesocosms operated under greenhouse conditions, planted with three different plant species (Typha latifolia, Carex rostrata, Schoenoplectus acutus) and an unplanted control were used in the calibration of this mechanistic model.

View Article and Find Full Text PDF

The engineering of optical and acoustic material functionalities via construction of ordered local and global architectures on various length scales commensurate with and well below the characteristic length scales of photons and phonons in the material is an indispensable and powerful means to develop novel materials. In the current mature status of photonics, polymers hold a pivotal role in various application areas such as light-emission, sensing, energy, and displays, with exclusive advantages despite their relatively low dielectric constants. Moreover, in the nascent field of phononics, polymers are expected to be a superior material platform due to the ability for readily fabricated complex polymer structures possessing a wide range of mechanical behaviors, complete phononic bandgaps, and resonant architectures.

View Article and Find Full Text PDF

Total nitrogen (TN) removal in treatment wetlands (TWs) is challenging due to nitrogen cycle complexity and the variation of influent nitrogen species. Plant species, season, temperature and hydraulic loading most likely influence root zone oxygenation and appurtenant nitrogen removal, especially for ammonium-rich wastewater. Nitrogen data were collected from two experiments utilizing batch-loaded (3-, 6-, 9- and 20-day residence times), sub-surface TWs monitored for at least one year during which temperature was varied between 4 and 24 °C.

View Article and Find Full Text PDF

The basic requirements for plant growth are light, CO2, water, and minerals. However, the absorption and utilization of each of these requires investment on the part of the plant. The primary products of plants are sugars, and the hexose sugars glucose and fructose are the raw material for most of the metabolic pathways and organic matter in plants.

View Article and Find Full Text PDF

Understanding thermal behavior of metallic clusters on their solid supports is important for avoiding sintering and aggregation of the active supported metallic particles in heterogeneous catalysis. As a model system we have studied the diffusion of gold nano-clusters on modified Ru(0001) single crystal surfaces, employing surface density grating formation via a laser induced ablation technique. Surface modifications included damage induced by varying periods of Ne(+) ion sputtering at a collision energy of 2.

View Article and Find Full Text PDF

Constructed wetlands offer an effective means for treatment of wastewater from a variety of sources. An understanding of the microbial ecology controlling nitrogen, carbon and sulfur cycles in constructed wetlands has been identified as the greatest gap for optimizing performance of these promising treatment systems. It is suspected that operational factors such as plant types and hydraulic operation influence the subsurface wetland environment, especially redox, and that the observed variation in effluent quality is due to shifts in the microbial populations and/or their activity.

View Article and Find Full Text PDF

Floating islands are a form of treatment wetland characterized by a mat of synthetic matrix at the water surface into which macrophytes can be planted and through which water passes. We evaluated two matrix materials for treating domestic wastewater, recycled plastic and recycled carpet fibers, for chemical oxygen demand (COD) and nitrogen removal. These materials were compared to pea gravel or open water (control).

View Article and Find Full Text PDF

The mechanism of laser-induced removal of Xe overlayers from a Si substrate has been investigated employing MD simulations and evaluated by buffer layer assisted laser patterning experiments. Two distinct regimes of overlayer removal are identified in the simulations of a uniform heating of the Si substrate by a 5 ns laser pulse: The intensive evaporation from the surface of the Xe overlayer and the detachment of the entire Xe overlayer driven by explosive boiling in the vicinity of the hot substrate. Simulations of selective heating of only a fraction of the silicon substrate suggest that the lateral heat transfer and bonding to the unheated, colder regions of the Xe overlayer is very efficient and suppresses the separation of a fraction of the overlayer from the substrate.

View Article and Find Full Text PDF