Predicting elemental cycles and maintaining water quality under increasing anthropogenic influence requires knowledge of the spatial drivers of river microbiomes. However, understanding of the core microbial processes governing river biogeochemistry is hindered by a lack of genome-resolved functional insights and sampling across multiple rivers. Here we used a community science effort to accelerate the sampling, sequencing and genome-resolved analyses of river microbiomes to create the Genome Resolved Open Watersheds database (GROWdb).
View Article and Find Full Text PDFIce free areas of continental Antarctica are among the coldest and driest environments on Earth, and yet, they support surprisingly diverse and highly adapted microbial communities. Endolithic growth is one of the key adaptations to such extreme environments and often represents the dominant life-form. Despite growing scientific interest, little is known of the mechanisms that influence the assembly of endolithic microbiomes across these harsh environments.
View Article and Find Full Text PDFInteractions between microbiomes and metabolites play crucial roles in the environment, yet how these interactions drive greenhouse gas emissions during ecosystem changes remains unclear. Here we analysed microbial and metabolite composition across a permafrost thaw gradient in Stordalen Mire, Sweden, using paired genome-resolved metagenomics and high-resolution Fourier transform ion cyclotron resonance mass spectrometry guided by principles from community assembly theory to test whether microorganisms and metabolites show concordant responses to changing drivers. Our analysis revealed divergence between the inferred microbial versus metabolite assembly processes, suggesting distinct responses to the same selective pressures.
View Article and Find Full Text PDFRiverine dissolved organic matter (DOM) is crucial to global carbon cycling and aquatic ecosystems. However, the geographical patterns and environmental drivers of DOM chemodiversity remain elusive especially in the waters and sediments of continental rivers. Here, we systematically analyzed DOM molecular diversity and composition in surface waters and sediments across 97 broadly distributed rivers using data from the Worldwide Hydrobiogeochemistry Observation Network for Dynamic River Systems (WHONDRS) consortium.
View Article and Find Full Text PDFAntarctica's extreme environmental conditions impose selection pressures on microbial communities. Indeed, a previous study revealed that bacterial assemblages at the Cierva Point Wetland Complex (CPWC) are shaped by strong homogeneous selection. Yet which bacterial phylogenetic clades are shaped by selection processes and their ecological strategies to thrive in such extreme conditions remain unknown.
View Article and Find Full Text PDFHyporheic zones (HZs)─zones of groundwater-surface water mixing─are hotspots for dissolved organic matter (DOM) and nutrient cycling that can disproportionately impact aquatic ecosystem functions. However, the mechanisms affecting DOM metabolism through space and time in HZs remain poorly understood. To resolve this gap, we investigate a recently proposed theory describing trade-offs between carbon (C) and nitrogen (N) limitations as a key regulator of HZ metabolism.
View Article and Find Full Text PDFLakes are active components of the global carbon cycle and host a range of processes that degrade and modify dissolved organic matter (DOM). Through the degradation of DOM molecules and the synthesis of new compounds, microbes in aquatic environments strongly and continuously influence chemodiversity, which can feedback to influence microbial diversity. Developing a better understanding of the biodiversity patterns that emerge along spatial and environmental gradients is one of the key objectives of community ecology.
View Article and Find Full Text PDFPredicting elemental cycles and maintaining water quality under increasing anthropogenic influence requires understanding the spatial drivers of river microbiomes. However, the unifying microbial processes governing river biogeochemistry are hindered by a lack of genome-resolved functional insights and sampling across multiple rivers. Here we employed a community science effort to accelerate the sampling, sequencing, and genome-resolved analyses of river microbiomes to create the Genome Resolved Open Watersheds database (GROWdb).
View Article and Find Full Text PDFWe present a system for carrying out small batch reactor oxygen consumption experiments on water and sediment samples for environmental questions. In general, it provides several advantages that can help researchers achieve impactful experiments at relatively low costs and high data quality. In particular, it allows for multiple reactors to be operated and their oxygen concentrations to be measured simultaneously, providing high throughput and high time-resolution data, which can be advantageous.
View Article and Find Full Text PDFSetting the pace of life and constraining the role of members in food webs, body size can affect the structure and dynamics of communities across multiple scales of biological organization (e.g., from the individual to the ecosystem).
View Article and Find Full Text PDFVariation in the electrical conductivity (EC) of water can reveal environmental disturbance and natural dynamics, including factors such as anthropogenic salinization. Broader application of open source (OS) EC sensors could provide an inexpensive method to measure water quality. While studies show that other water quality parameters can be robustly measured with sensors, a similar effort is needed to evaluate the performance of OS EC sensors.
View Article and Find Full Text PDFAlthough river ecosystems comprise less than 1% of Earth's total non-glaciated area, they are critical modulators of microbially and virally orchestrated global biogeochemical cycles. However, most studies either use data that is not spatially resolved or is collected at timepoints that do not reflect the short life cycles of microorganisms. As a result, the relevance of microbiome interactions and the impacts they have over time on biogeochemical cycles are poorly understood.
View Article and Find Full Text PDFCoastal upland forests are facing widespread mortality as sea-level rise accelerates and precipitation and storm regimes change. The loss of coastal forests has significant implications for the coastal carbon cycle; yet, predicting mortality likelihood is difficult due to our limited understanding of disturbance impacts on coastal forests. The manipulative, ecosystem-scale Terrestrial Ecosystem Manipulation to Probe the Effects of Storm Treatments (TEMPEST) experiment addresses the potential for freshwater and estuarine-water disturbance events to alter tree function, species composition, and ecosystem processes in a deciduous coastal forest in MD, USA.
View Article and Find Full Text PDFCH emissions from inland waters are highly uncertain in the current global CH budget, especially for streams, rivers, and other lotic systems. Previous studies have attributed the strong spatiotemporal heterogeneity of riverine CH to environmental factors such as sediment type, water level, temperature, or particulate organic carbon abundance through correlation analysis. However, a mechanistic understanding of the basis for such heterogeneity is lacking.
View Article and Find Full Text PDFArctic permafrost is thawing due to global warming, with unknown consequences on the microbial inhabitants or associated viruses. DNA viruses have previously been shown to be abundant and active in thawing permafrost, but little is known about RNA viruses in these systems. To address this knowledge gap, we assessed the composition of RNA viruses in thawed permafrost samples that were incubated for 97 days at 4°C to simulate thaw conditions.
View Article and Find Full Text PDFDespite advances in sequencing, lack of standardization makes comparisons across studies challenging and hampers insights into the structure and function of microbial communities across multiple habitats on a planetary scale. Here we present a multi-omics analysis of a diverse set of 880 microbial community samples collected for the Earth Microbiome Project. We include amplicon (16S, 18S, ITS) and shotgun metagenomic sequence data, and untargeted metabolomics data (liquid chromatography-tandem mass spectrometry and gas chromatography mass spectrometry).
View Article and Find Full Text PDFMicrobial communities in agricultural soils are fundamental for plant growth and in vineyard ecosystems contribute to defining regional wine quality. Managing soil microbes towards beneficial outcomes requires knowledge of how community assembly processes vary across taxonomic groups, spatial scales, and through time. However, our understanding of microbial assembly remains limited.
View Article and Find Full Text PDFDissolved organic matter (DOM) is a large and complex mixture of molecules that fuels microbial metabolism and regulates biogeochemical cycles. Individual DOM molecules have unique functional traits, but how their assemblages vary deterministically under global change remains poorly understood. Here, we examine DOM and associated bacteria in 300 aquatic microcosms deployed on mountainsides that span contrasting temperatures and nutrient gradients.
View Article and Find Full Text PDFArchaea represent a diverse group of microorganisms often associated with extreme environments. However, an integrated understanding of biogeographical patterns of the specialist Haloarchaea and the potential generalist ammonia-oxidizing archaea (AOA) across large-scale environmental gradients remains limited. We hypothesize that niche differentiation determines their distinct distributions along environmental gradients.
View Article and Find Full Text PDFChanges in climate, season, and vegetation can alter organic export from watersheds. While an accepted tradeoff to protect public health, disinfection processes during drinking water treatment can adversely react with organic compounds to form disinfection byproducts (DBPs). By extension, DBP monitoring can yield insights into hydrobiogeochemical dynamics within watersheds and their implications for water resource management.
View Article and Find Full Text PDFHigh-resolution mass spectrometry techniques are widely used in the environmental sciences to characterize natural organic matter and, when utilizing these instruments, researchers must make multiple decisions regarding sample pre-treatment and the instrument ionization mode. To identify how these choices alter organic matter characterization and resulting conclusions, we analyzed a collection of 17 riverine samples from East River, CO (USA) under four PPL-based Solid Phase Extraction (SPE) treatment and electrospray ionization polarity (, positive and negative) combinations: SPE (+), SPE (-), non-SPE (-), and non-SPE (+). The greatest number of formula assignments were achieved with SPE-treated samples due to the removal of compounds that could interfere with ionization.
View Article and Find Full Text PDFUnderstanding the mechanisms underlying the assembly of communities has long been the goal of many ecological studies. While several studies have evaluated community wide ecological assembly, fewer have focused on investigating the impacts of individual members within a community or assemblage on ecological assembly. Here, we adapted a previous null model β-nearest taxon index (βNTI) to measure the contribution of individual features within an ecological community to overall assembly.
View Article and Find Full Text PDFAs functional traits are conserved at different phylogenetic depths, the ability to detect community assembly processes can be conditional on the phylogenetic resolution; yet most previous work quantifying their influence has focused on a single level of phylogenetic resolution. Here, we have studied the ecological assembly of bacterial communities from an Antarctic wetland complex, applying null models across different levels of phylogenetic resolution (i.e.
View Article and Find Full Text PDF