Publications by authors named "Stegemann J"

Objective: The prognosis of older adults is strongly influenced by the relation of multifactorial geriatric syndromes (GS) and their health-maintaining counterparts, geriatric resources (GR). The present analysis aimed to identify clusters of comorbidities, GS and GR, and to measure their multidimensional prognostic signature in older patients admitted to different healthcare settings.

Design: Pooled secondary analysis of three longitudinal interventional studies with the 3- and 6-month follow-up data collection on mortality and rehospitalisation.

View Article and Find Full Text PDF

Material flow analysis (MFA) is used to quantify and understand the life cycles of materials from production to end of use, which enables environmental, social, and economic impacts and interventions. MFA is challenging as available data are often limited and uncertain, leading to an under-determined system with an infinite number of possible stocks and flows values. Bayesian statistics is an effective way to address these challenges by principally incorporating domain knowledge, quantifying uncertainty in the data, and providing probabilities associated with model solutions.

View Article and Find Full Text PDF

The development of perfusable and multiscale vascular networks remains one of the largest challenges in tissue engineering. As such, there is a need for the creation of customizable and facile methods to produce robustly vascularized constructs. In this study, secondarily crosslinkable (clickable) poly(ethylene glycol)-norbornene (PEGNB) microbeads were produced and evaluated for their ability to sequentially support suspension bioprinting and microvascular self-assembly towards the aim of engineering hierarchical vasculature.

View Article and Find Full Text PDF

Disordered hemostasis associated with life-threatening hemorrhage commonly afflicts patients in the emergency room, critical care unit, and perioperative settings. Rapid and sensitive hemostasis phenotyping is needed to guide administration of blood components and hemostatic adjuncts to reverse aberrant coagulofibrinolysis. Here, resonant acoustic rheometry (RAR), a technique that quantifies the viscoelastic properties of soft biomaterials, was applied to assess plasma coagulation in a cohort of bleeding patients with concomitant clinical coagulation assays and whole blood thromboelastography (TEG) as part of their routine care.

View Article and Find Full Text PDF

Sarcopenia is associated with adverse health outcomes. Understanding the association between sarcopenia, multidimensional frailty, and prognosis is essential for improving patient care. The aim of this study was to assess the prevalence and prognostic signature of sarcopenia in an acute hospital setting co-led by internists and geriatricians.

View Article and Find Full Text PDF

The speciation of Cr, Zn, Cu and Pb in two metal finishing filter cakes (TX and ST) was investigated by X-ray absorption spectroscopy (XAS) complemented by X-ray fluorescence (XRF) and X-ray diffraction (XRD). XRF showed that concentrations of Cr, Zn, Cu and Pb were 1.4%, 0.

View Article and Find Full Text PDF

Insufficient vascularization is a main barrier to creating engineered bone grafts for treating large and ischemic defects. Modular tissue engineering approaches have promise in this application because of the ability to combine tissue types and to localize microenvironmental cues to drive desired cell function. In direct bone formation approaches, it is challenging to maintain sustained osteogenic activity, since vasculogenic cues can inhibit tissue mineralization.

View Article and Find Full Text PDF

Resonant Acoustic Rheometry (RAR), a newly developed ultrasound-based technique for non-contact characterization of soft viscoelastic materials, has shown promise for quantitative viscoelastic assessment of temporally changing soft biomaterials in real time, and may be used to monitor blood coagulation process. Here, we report the development of a novel, multichannel RAR (mRAR) system for simultaneous measurements of multiple temporally evolving samples and demonstration of its use for monitoring the coagulation of multiple small-volume plasma samples. The mRAR system was constructed using an array of 4 custom-designed ultrasound transducers at 5.

View Article and Find Full Text PDF

Pb/Zn smelter slag is a hazardous industrial waste from the Imperial Smelting Process (ISP). The speciation of zinc, lead, copper and arsenic in the slag controls their recovery or fate in the environment but has been little investigated. X-ray Absorption Spectroscopy (XAS) was applied to this complex poorly crystalline material for the first time to gain new insights about speciation of elements at low concentration.

View Article and Find Full Text PDF
Article Synopsis
  • The viscoelastic properties of hydrogels are crucial for their use in various scientific and industrial applications, but assessing these properties can be challenging due to their complex behaviors.
  • Resonant acoustic rheometry (RAR) is a new, non-contact technique that measures resonant surface waves in materials, allowing for high temporal resolution during processes like fibrin gelation and PEG polymerization.
  • RAR successfully captures the dynamic changes in frequency and amplitude of surface waves, revealing important transitions in the materials that reflect the interplay of surface tension, viscosity, and elasticity during hydrogel formation, thus providing an improved method for characterizing soft materials.
View Article and Find Full Text PDF

Resonant Acoustic Rheometry (RAR), a newly developed ultrasound-based technique for non-contact characterization of soft viscoelastic materials, has shown promise for quantitative assessment of plasma coagulation by monitoring the entire dynamic process in real time. Here, we report the development of a multichannel RAR (mRAR) system for simultaneous monitoring of the coagulation of multiple small-volume plasma samples, a capability that is critical to efficiently provide improved assessment of coagulation. The mRAR system was constructed using an array of 4 custom-designed ultrasound transducers at 5.

View Article and Find Full Text PDF

There is a significant clinical need to develop effective vascularization strategies for tissue engineering and the treatment of ischemic pathologies. In patients afflicted with critical limb ischemia, comorbidities may limit common revascularization strategies. Cell-encapsulating modular microbeads possess a variety of advantageous properties, including the ability to support prevascularization in vitro while retaining the ability to be injected in a minimally invasive manner in vivo.

View Article and Find Full Text PDF

The field of biomaterials science is highly active, with a steadily increasing number of publications and new journals being founded. This article brings together contributions from the editors of six leading journals in the area of biomaterials science and engineering. Each contributor highlights specific advances, topics, and trends that have emerged through the publications in their respective journal in the calendar year 2022.

View Article and Find Full Text PDF

Single-walled carbon nanotubes (SWCNTs) are versatile near infrared (NIR) fluorescent building blocks for biosensors. Their surface is chemically tailored to respond to analytes by a change in fluorescence. However, intensity-based signals are easily affected by external factors such as sample movements.

View Article and Find Full Text PDF

The formation of functional capillary blood vessels that can sustain the metabolic demands of transplanted parenchymal cells remains one of the biggest challenges to the clinical realization of engineered tissues for regenerative medicine. As such, there remains a need to better understand the fundamental influences of the microenvironment on vascularization. Poly(ethylene glycol) (PEG) hydrogels have been widely adopted to interrogate the influence of matrix physicochemical properties on cellular phenotypes and morphogenetic programs, including the formation of microvascular networks, in part due to the ease with which their properties can be controlled.

View Article and Find Full Text PDF

Biochemical processes are fast and occur on small-length scales, which makes them difficult to measure. Optical nanosensors based on single-wall carbon nanotubes (SWCNTs) are able to capture such dynamics. They fluoresce in the near-infrared (NIR, 850-1700 nm) tissue transparency window and the emission wavelength depends on their chirality.

View Article and Find Full Text PDF

Compared with conventional coagulation tests and factor-specific assays, viscoelastic hemostatic assays (VHAs) can provide a more thorough evaluation of clot formation and lysis but have several limitations including clot deformation. In this proof-of-concept study, we test a noncontact technique, termed resonant acoustic rheometry (RAR), for measuring the kinetics of human plasma coagulation. Specifically, RAR utilizes a dual-mode ultrasound technique to induce and detect surface oscillation of blood samples without direct physical contact and measures the resonant frequency of the surface oscillation over time, which is reflective of the viscoelasticity of the sample.

View Article and Find Full Text PDF

Bioengineered bone designed to heal large defects requires concomitant development of osseous and vascular tissue to ensure engraftment and survival. Adult human mesenchymal stromal cells (MSC) are promising in this application because they have demonstrated both osteogenic and vasculogenic potential. This study employed a modular approach in which cells were encapsulated in biomaterial carriers (microtissues) designed to support tissue-specific function.

View Article and Find Full Text PDF

Biomaterial-based bone regeneration strategies often include a cellular component to accelerate healing. Modular approaches have the potential for minimally-invasive delivery and the ability to conformally fill complex defects. In this study, spherical gelatin microparticles were fabricated via water-in-oil emulsification and were subsequently crosslinked with genipin.

View Article and Find Full Text PDF

Adipose-derived stem cells (ASCs) are an abundant and easily accessible multipotent stem cell source with potential application in smooth muscle regeneration strategies. In 3D collagen hydrogels, we investigated whether sustained release of growth factors (GF) PDGF-AB and TGF-β1 from GF-loaded microspheres could induce a smooth muscle cell (SMC) phenotype in ASCs, and if the addition of uniaxial cyclic stretch could enhance the differentiation level. This study demonstrated that the combination of cyclic stretch and GF release over time from loaded microspheres potentiated the differentiation of ASCs, as quantified by protein expression of early to late SMC differentiation markers (SMA, TGLN and smooth muscle MHC).

View Article and Find Full Text PDF

The success of total joint replacements has led to consistent growth in the use of arthroplasty in progressively younger patients. However, more than 10 percent of patients require revision surgeries due to implant failure caused by osteolytic loosening. These failures are classified as either aseptic or septic and are associated with the presence of particulate wear debris generated by mechanical action between implant components.

View Article and Find Full Text PDF

We customize a transversely structured, tunable light landscape on the basis of orbital angular momentum (OAM)-carrying beams for the purpose of advanced optical manipulation. Combining Laguerre-Gaussian (LG) modes with helical phase fronts of opposite OAM handedness, counter-rotating transfer of OAM is enabled in a concentric intensity structure, creating a dynamic "grinding" scenario on dielectric microparticles. We demonstrate the ability to trap and rotate silica spheres of various sizes and exploit the light fields' feature to spatially separate trapped objects by their size.

View Article and Find Full Text PDF

A key challenge in the treatment of large bone defects is the need to provide an adequate and stable vascular supply as new tissue develops. Bone tissue engineering applies selected biomaterials and cell types to create an environment that promotes tissue formation, maturation, and remodeling. Mesenchymal stromal cells (MSCs) have been widely used in these strategies because of their established effects on bone formation, and their ability to act as stabilizing pericytes that support vascular regeneration by endothelial cells (ECs).

View Article and Find Full Text PDF
Article Synopsis
  • Resonant Acoustic Rheometry (RAR) is a non-contact method that characterizes the mechanical properties of soft and viscoelastic biomaterials, like hydrogels, using focused ultrasound to analyze surface waves.
  • RAR was able to consistently provide quantitative data on materials such as fibrin, gelatin, and agarose hydrogels, measuring their intrinsic properties without interference from ultrasound parameters.
  • This technique allows for tracking dynamic changes in viscoelastic properties over time, offering advantages over traditional rheology methods, including high-throughput capabilities and validation against established testing methods.
View Article and Find Full Text PDF