Gradient-based optimization using algorithmic derivatives can be a useful technique to improve engineering designs with respect to a computer-implemented objective function. Likewise, uncertainty quantification through computer simulations can be carried out by means of derivatives of the computer simulation. However, the effectiveness of these techniques depends on how 'well-linearizable' the software is.
View Article and Find Full Text PDFProton therapy is highly sensitive to range uncertainties due to the nature of the dose deposition of charged particles. To ensure treatment quality, range verification methods can be used to verify that the individual spots in a pencil beam scanning treatment fraction match the treatment plan. This study introduces a novel metric for proton therapy quality control based on uncertainties in range verification of individual spots.
View Article and Find Full Text PDFThe DICOM () standard provides a framework for a diagnostically-accurate representation, processing, transfer, storage and display of medical imaging data. Information hiding in DICOM is currently limited to the application of digital media steganography and watermarking techniques on the media parts of DICOM files, as well as text steganographic techniques for embedding information in metadata of DICOM files. To improve the overall security of the DICOM standard, we investigate its susceptibility to network steganographic techniques.
View Article and Find Full Text PDFBackground: Proton computed tomography (pCT) and radiography (pRad) are proposed modalities for improved treatment plan accuracy and treatment validation in proton therapy. The pCT system of the Bergen pCT collaboration is able to handle very high particle intensities by means of track reconstruction. However, incorrectly reconstructed and secondary tracks degrade the image quality.
View Article and Find Full Text PDF