Single molecule x-ray scattering experiments using free-electron lasers hold the potential to resolve biomolecular structures and structural ensembles. However, molecular electron density determination has so far not been achieved because of low photon counts, high noise levels, and low hit rates. Most approaches therefore focus on large specimen like entire viruses, which scatter sufficiently many photons to allow orientation determination of each image.
View Article and Find Full Text PDFJ Chem Theory Comput
September 2021
Time-lagged independent component analysis (tICA) is a widely used dimension reduction method for the analysis of molecular dynamics (MD) trajectories and has proven particularly useful for the construction of protein dynamics Markov models. It identifies those "slow" collective degrees of freedom onto which the projections of a given trajectory show maximal autocorrelation for a given lag time. Here we ask how much information on the actual protein dynamics and, in particular, the free energy landscape that governs these dynamics the tICA-projections of MD-trajectories contain, as opposed to noise due to the inherently stochastic nature of each trajectory.
View Article and Find Full Text PDF