Publications by authors named "Steffen Klingenhoefer"

The accurate processing of temporal information is of critical importance in everyday life. Yet, psychophysical studies in humans have shown that the perception of time is distorted around saccadic eye movements. The neural correlates of this misperception are still poorly understood.

View Article and Find Full Text PDF

Keeping track of objects in our environment across body and eye movements is essential for perceptual stability and localization of external objects. As of yet, it is largely unknown how this perceptual stability is achieved. A common behavioral approach to investigate potential neuronal mechanisms underlying spatial vision has been the presentation of one brief visual stimulus across eye movements.

View Article and Find Full Text PDF

Interaction with the environment requires fast and reliable sensory processing. The visual system is confronted with a continuous flow of high-dimensional input (e.g.

View Article and Find Full Text PDF

Primates use frequent, rapid eye movements to sample their visual environment. This is a fruitful strategy to make the best use of the highly sensitive foveal part of the retina, but it requires neural mechanisms to bind the rapidly changing visual input into a single, stable percept. Studies investigating these neural mechanisms have typically assumed that perisaccadic perception in nonhuman primates matches that of humans.

View Article and Find Full Text PDF

In the natural world, self-motion always stimulates several different sensory modalities. Here we investigated the interplay between a visual optic flow stimulus simulating self-motion and a tactile stimulus (air flow resulting from self-motion) while human observers were engaged in a distance reproduction task. We found that adding congruent tactile information (i.

View Article and Find Full Text PDF

Humans can perceive and estimate approximate numerical information, even when accurate counting is impossible e.g., due to short presentation time.

View Article and Find Full Text PDF

Primates perform saccadic eye movements in order to bring the image of an interesting target onto the fovea. Compared to stationary targets, saccades toward moving targets are computationally more demanding since the oculomotor system must use speed and direction information about the target as well as knowledge about its own processing latency to program an adequate, predictive saccade vector. In monkeys, different brain regions have been implicated in the control of voluntary saccades, among them the lateral intraparietal area (LIP).

View Article and Find Full Text PDF

The spatially uniform mislocalization of stimuli flashed around the onset of fast eye-movements (perisaccadic shift) has previously been explained by an inaccurate internal representation of current eye position. However, this hypothesis does not account for the observation that continuously presented stimuli are correctly localized during saccades. Here we show that the two findings are not mutually exclusive.

View Article and Find Full Text PDF

Interaction with the outside world requires the knowledge about where objects are with respect to one's own body. Such spatial information is represented in various topographic maps in different sensory systems. From a computational point of view, however, a single, modality-invariant map of the incoming sensory signals appears to be a more efficient strategy for spatial representations.

View Article and Find Full Text PDF

A number of studies have investigated the localization of briefly flashed targets during saccades to understand how the brain perceptually compensates for changes in gaze direction. Typical version saccades, i.e.

View Article and Find Full Text PDF