Diabetes mellitus is one of the most frequent metabolic diseases associated with hyperglycemia. Although antidiabetic drugs reduce hyperglycemia, diabetic patients suffer from abnormal fluctuations in blood glucose levels leading to the onset of long-term complications. Aldose reductase inhibitors are considered a promising strategy for regulating the occurrence of diabetic-specific comorbidities.
View Article and Find Full Text PDFThe emergence of SARS-CoV-2, the causative agent of COVID-19, has highlighted the need for advanced antiviral strategies. Targeting the coronaviral methyltransferase nsp14, which is essential for RNA capping, offers a promising approach for the development of small-molecule inhibitors. We designed and synthesized a series of adenosine 5'-carboxamide derivatives as potential nsp14 inhibitors and identified coumarin analogs to be particularly effective.
View Article and Find Full Text PDFNsp14 is an RNA methyltransferase (MTase) encoded by all coronaviruses. In fact, many viral families, including DNA viruses, encode MTases that catalyze the methylation of the RNA precap structure, resulting in fully capped viral RNA. This capping is crucial for efficient viral RNA translation, stability, and immune evasion.
View Article and Find Full Text PDFIn the model system of DOPC (1,2-ioleyl-sn-glycero-3-hosphoholine) liposomes exposed to peroxyl radicals generated by the azoinitiator AAPH, cemtirestat (CMTI-SH) inhibited lipid peroxidation more efficiently than the natural antioxidant glutathione. In the concentrations 100 to 500 µM, both CMTI-SH and GSH induced distinct lag phases in the initial stages of lipid peroxidation yet GSH produced consistently shorter induction periods (about twice) than equimolar CMTI-SH. Moreover, concentration dependence of lipid peroxidation inhibition measured at the 80th minute, revealed about three times higher IC50 value for GSH compared to CMTI-SH.
View Article and Find Full Text PDFInhibiting aldose reductase (ALR2, AR) as well as maintaining a concomitant antioxidant (AO) activity via dual-acting agents may be a rational approach to prevent cellular glucotoxicity and at least delay the progression of diabetes mellitus (DM). This study was aimed at evaluating the dual-acting AR inhibitor (ARI) cemtirestat (CMTI) on tissue oxidative stress (OS) and carbonyl stress (CS) biomarkers in rats exposed to fructose alone (F) or fructose plus streptozotocin (D; type-2 diabetic). D and F rats were either untreated or treated daily with low- or high-dose CMTI, ARI drug epalrestat (EPA) or antioxidant stobadine (STB) for 14 weeks.
View Article and Find Full Text PDFA collaborative, open-science team undertook discovery of novel small molecule inhibitors of the SARS-CoV-2 nsp16-nsp10 2'--methyltransferase using a high throughput screening approach with the potential to reveal new inhibition strategies. This screen yielded compound , a ligand possessing an electron-deficient double bond, as an inhibitor of SARS-CoV-2 nsp16 activity. Surprisingly, X-ray crystal structures revealed that covalently binds within a previously unrecognized cryptic pocket near the -adenosylmethionine binding cleft in a manner that prevents occupation by -adenosylmethionine.
View Article and Find Full Text PDFThe search for new drugs against COVID-19 and its causative agent, SARS-CoV-2, is one of the major trends in the current medicinal chemistry. Targeting capping machinery could be one of the therapeutic concepts based on a unique mechanism of action. Viral RNA cap synthesis involves two methylation steps, the first of which is mediated by the nsp14 protein.
View Article and Find Full Text PDFFructose, endogenously produced as a consequence of activation of the polyol pathway under hyperglycemic conditions, contribute to formation of advanced glycoxidation end products (AGEs) and carbonyl stress. Oxidative stress is increased in diabetes (DM) due to AGEs formation and the utilization of NADPH by aldo-keto reductase, AKR1B1(AR), the first enzyme in polyol pathway. Since inhibition of AR is an attractive approach for the management of diabetic eye diseases, we aimed to compare the effects of a novel AR inhibitor (ARI)/antioxidant (AO) compound cemtirestat on eye tissues with the effects of ARI drug epalrestat and AO agent stobadine in rat model for glycotoxicity.
View Article and Find Full Text PDFCemtirestat, a bifunctional drug acting as an aldose reductase inhibitor with antioxidant ability, is considered a promising candidate for the treatment of diabetic neuropathy. Our study firstly examined the effects of prolonged cemtirestat treatment on bone parameters reflecting bone quality in non-diabetic rats and rats with streptozotocin (STZ)-induced diabetes. Experimental animals were assigned to four groups: non-diabetic rats, non-diabetic rats treated with cemtirestat, diabetic rats, and diabetic rats treated with cemtirestat.
View Article and Find Full Text PDFAldose reductase, the first enzyme of the polyol pathway represents a key drug target in therapy of diabetic complications. In this study a series of six novel rhodanine based inhibitors of aldose reductase was designed, synthesized, and tested for their ability to inhibit aldose reductase and for selectivity relative to structurally related aldehyde reductase. Aldose reductase inhibitory activities of the compounds were characterized by the IC values ranging from 2000 nM to 20 nM.
View Article and Find Full Text PDFSepsis is a life-threatening disease that affects millions of people worldwide. Microbial infections that lead to sepsis syndrome are associated with an increased production of inflammatory molecules. Aldose reductase has recently emerged as a molecular target that is involved in various inflammatory diseases, including sepsis.
View Article and Find Full Text PDFIn search of dually active PPAR-modulators/aldose reductase (ALR2) inhibitors, 16 benzylidene thiazolidinedione derivatives, previously reported as partial PPARγ agonists, together with additional 18 structural congeners, were studied for aldose reductase inhibitory activity. While no compounds had dual property, our efforts led to the identification of promising inhibitors of ALR2. Eight compounds (11, 15-16, 20-24, 30) from the library of 33 compounds were identified as potent and selective inhibitors of ALR2.
View Article and Find Full Text PDFAldose reductase (AR, ALR2), the first enzyme of the polyol pathway, is implicated in the pathophysiology of diabetic complications. Aldose reductase inhibitors (ARIs) thus present a promising therapeutic approach to treat a wide array of diabetic complications. Moreover, a therapeutic potential of ARIs in the treatment of chronic inflammation-related pathologies and several genetic metabolic disorders has been recently indicated.
View Article and Find Full Text PDFAldose reductase (AR) catalyzes the conversion of glucose to sorbitol in a NADPH-dependent reaction, thereby increasing the production of reactive oxygen species (ROS). Since AR activation is linked to redox dysregulation and cell damage in neurodegenerative diseases, AR inhibitors (ARIs) constitute promising therapeutic tools for the treatment of these disorders. Among these compounds, the novel substituted triazinoindole derivatives cemtirestat (CMTI) and COTI, as well as the clinically employed epalrestat (EPA) and the pyridoindole-antioxidant stobadine (STB), were tested in both PC12 cells and BV2 microglia exposed to four different neurotoxic models.
View Article and Find Full Text PDFRecently we have developed novel oxotriazinoindole inhibitors (OTIs) of aldose reductase (ALR2), characterized by high efficacy and selectivity. Herein we describe novel OTI derivatives design of which is based on implementation of additional intermolecular interactions within an unoccupied pocket of the ALR2 enzyme. Four novel derivatives, OTI-(7-10), of the previously developed N-benzyl(oxotriazinoindole) inhibitor OTI-6 were synthetized and screened.
View Article and Find Full Text PDFCellular redox dysregulation produced by aldose reductase (AR) in the presence of high blood sugar is a mechanism involved in neurodegeneration commonly observed in diabetes mellitus (DM) and Parkinson's disease (PD); therefore, AR is a key target for treatment of both diseases. The substituted triazinoindole derivatives 2-(3-thioxo-2H-[1,2,4]triazino[5,6-b]indol-5(3H)-yl) acetic acid (cemtirestat or CMTI) and 2-(3-oxo-2H-[1,2,4]triazino[5,6-b]indol-5(3H)-yl) acetic acid (COTI) are well-known AR inhibitors (ARIs). The neuroprotective properties of CMTI, COTI, the clinically used epalrestat (EPA), and the pyridoindole antioxidants stobadine and SMe1EC2 were all tested in the neurotoxic models produced by hyperglycemic glucotoxicity (HG, 75 mM D-glucose, 72 h), 6-hydroxydopamine (6-OHDA), and HG+6-OHDA models in PC12 cells.
View Article and Find Full Text PDF(4-Oxo-2-thioxothiazolidin-3-yl)acetic acids exhibit a wide range of pharmacological activities. Among them, the only derivative used in clinical practice is the aldose reductase inhibitor epalrestat. Structurally related compounds, [(5Z)-(5-arylalkylidene-4-oxo-2-thioxo-1,3-thiazolidin-3-yl)]acetic acid derivatives were prepared previously as potential antifungal agents.
View Article and Find Full Text PDFNeuroprotective action of the novel aldose reductase (AR) inhibitor cemtirestat (CMT), 2-(3-thioxo-2H-[1,2,4]triazino[5,6-b]indol-5(3H)-yl)acetic acid, was recently proved in experimental rat models of diabetes. The in vivo results indicated that the antioxidant activity of this compound might have participated on its effects. The aim of this study was to explore in a greater detail the putative antioxidant mechanisms potentially involved in CMT mediated neuroprotection.
View Article and Find Full Text PDFTherapeutic interventions with aldose reductase inhibitors appear to be a promising approach to major pathological conditions (i.e. neuropathy/angiopathy related to chronic hyperglycemia, chronic inflammation and cancer).
View Article and Find Full Text PDFCemtirestat, 3-mercapto-5-[1,2,4]-triazino[5,6-] indole-5-acetic acid was recently designed and patented as a highly selective and efficient aldose reductase inhibitor endowed with antioxidant activity. The aim of the present study was to assess the general toxicity of cemtirestat using predictions, and assays. ProTox-II toxicity prediction software gave 17 "Inactive" outputs, a mild hepatotoxicity score (0.
View Article and Find Full Text PDFInhibition of aldose reductase (AR), the first enzyme of the polyol pathway, is a promising approach in treatment of diabetic complications. We proceeded with optimization of the thioxotriazinoindole scaffold of the novel AR inhibitor cemtirestat by replacement of sulfur with oxygen. A series of 2-(3-oxo-2-[1,2,4]triazino[5,6-]indol-5(3)-yl)acetic acid derivatives (OTIs), designed by molecular modeling and docking, were synthesized.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
April 2020
Hyperglycemia is considered a key risk factor for development of diabetic complications including neuropathy. There is strong scientific evidence showing a primary role of aldose reductase, the first enzyme of the polyol pathway, in the cascade of metabolic imbalances responsible for the detrimental effects of hyperglycemia. Aldose reductase is thus considered a significant drug target.
View Article and Find Full Text PDFPeripheral neuropathy is the most prevalent chronic complication of diabetes mellitus. Good glycemic control can delay the appearance of neuropathic symptoms in diabetic patients but it is not sufficient to prevent or cure the disease. Therefore therapeutic approaches should focus on attenuation of pathogenetic mechanisms responsible for the nerve injury.
View Article and Find Full Text PDFThe pentose phosphate pathway and glutathione-associated metabolism are the main antioxidant cellular defense systems. This study investigated the effects of the powerful antioxidant SMe1EC2 (2-ethoxycarbonyl-8-methoxy-2,3,4,4a,5,9b-hexahydro-1H-pyrido[4,3-b] indolinium dichloride) on pentose phosphate pathway (PPP) and glutathione-dependent enzyme activities in aged diabetic and aged matched control rats. Diabetes was induced by streptozotocin injection in rats aged 13-15 months.
View Article and Find Full Text PDFIn the previous study, the artichoke leaf extract showed effective inhibition of AKR1B1, the first enzyme of polyol pathway, which reduces high level of glucose to osmotically active sorbitol, important for development of chronic diabetic complications. In the present study, the effect of artichoke leaf extract and of several participating phenols (caffeic acid, chlorogenic acid, quinic acid, and luteolin) was tested on sorbitol level in rat lenses exposed to high glucose ex vivo, on cytotoxicity as well as on oxidative stress in C2C12 muscle cell line induced by high glucose in vitro. The concentration of sorbitol was determined by enzymatic analysis, the cytotoxicity was provided by WST-1 test and intracellular content of reactive oxygen species was determined by fluorescence of 2'-7'-dichlorofluorescein probe.
View Article and Find Full Text PDF