Intracellular delivery of molecules can be increased by laser-exposure of carbon black nanoparticles to cause photoporation of the cells. Here we sought to determine effects of multiple laser exposure parameters on intracellular uptake and cell viability with the goal of determining a single unifying parameter that predicts cellular bioeffects. DU145 human prostate cancer cells in suspension with nanoparticles were exposed to near-infrared nanosecond laser pulses over a range of experimental conditions.
View Article and Find Full Text PDFExposure of carbon-black (CB) nanoparticles to near-infrared nanosecond-pulsed laser energy can cause efficient intracellular delivery of molecules by photoporation. Here, cellular bioeffects of multi-walled carbon nanotubes (MWCNTs) and single-walled carbon nanotubes (SWCNTs) are compared to those of CB nanoparticles. In DU145 prostate-cancer cells, photoporation using CB nanoparticles transitions from (i) cells with molecular uptake to (ii) nonviable cells to (iii) fragmented cells with increasing laser fluence, as seen previously.
View Article and Find Full Text PDFDiversity in eukaryotic rRNA structure and function offers possibilities of therapeutic targets. Unlike ribosomes of prokaryotes, eukaryotic ribosomes contain species-specific rRNA expansion segments (ESs) with idiosyncratic structures and functions that are essential and specific to some organisms. Here we investigate expansion segment 7 (ES7), one of the largest and most variable expansions of the eukaryotic ribosome.
View Article and Find Full Text PDFExposure of cells and nanoparticles to near-infrared nanosecond pulsed laser light can lead to efficient intracellular delivery of molecules while maintaining high cell viability by a photoacoustic phenomenon known as transient nanoparticle energy transduction (TNET). Here, we examined the influence of cytoskeletal mechanics and plasma membrane fluidity on intracellular uptake of molecules and loss of cell viability due to TNET. We found that destabilization of actin filaments using latrunculin A led to greater uptake of molecules and less viability loss caused by TNET.
View Article and Find Full Text PDFPrevious studies have shown that exposure of carbon black nanoparticles to nanosecond pulsed near-infrared laser causes intracellular delivery of molecules through hypothesized transient breaks in the cell membrane. The goal of this study is to determine the underlying mechanisms of sequential energy transfer from laser light to nanoparticle to fluid medium to cell. We found that laser pulses on a timescale of 10 ns rapidly heat carbon nanoparticles to temperatures on the order of 1200 K.
View Article and Find Full Text PDFWe describe here a one pot RNA production, packaging and delivery system based on bacteriophage Qβ. We demonstrate a method for production of a novel RNAi scaffold, packaged within Qβ virus-like particles (VLPs). The RNAi scaffold is a general utility chimera that contains a functional RNA duplex with paired silencing and carrier sequences stabilized by a miR-30 stem-loop.
View Article and Find Full Text PDF