Publications by authors named "Stefanovic-Racic M"

Physical activity, including structured exercise, is associated with favorable health-related chronic disease outcomes. Although there is evidence of various molecular pathways that affect these responses, a comprehensive molecular map of these molecular responses to exercise has not been developed. The Molecular Transducers of Physical Activity Consortium (MoTrPAC) is a multicenter study designed to isolate the effects of structured exercise training on the molecular mechanisms underlying the health benefits of exercise and physical activity.

View Article and Find Full Text PDF
Article Synopsis
  • Biopsies of muscle and adipose tissue can help understand aging, but they are invasive, especially for older adults with health issues like sarcopenia and frailty.
  • The Study of Muscle, Mobility, and Aging (SOMMA) analyzed 861 older participants (ages 70-94) and found high success rates for muscle (97.1%) and adipose tissue (95.9%) biopsies.
  • Most participants reported minimal pain during procedures, and adverse events were rare and not serious, indicating that these biopsies are generally safe and well-tolerated in older adults.
View Article and Find Full Text PDF

Objective: Poor glycemic control during COVID-19 hospitalization is associated with higher mortality. However, the association between long-term glycemic control, as reflected by the glycosylated hemoglobin (HbA1c) and outcomes has yet to be clarified, with some studies reporting no association. The aim of this study is to determine the association between HbA1c and in-hospital mortality in patients with COVID-19.

View Article and Find Full Text PDF

Purpose Of Review: Hypertriglyceridemia-induced acute pancreatitis (HTG-AP) should be considered in all cases of acute pancreatitis and triglyceride levels measured early, so that appropriate early and long-term treatment can be initiated.

Recent Findings: In most cases of HTG-AP, conservative management (nothing by mouth, intravenous fluid resuscitation and analgesia) is sufficient to achieve triglyceride levels less than 500 mg/dl. Intravenous insulin and plasmapheresis are sometimes used, although prospective studies showing clinical benefits are lacking.

View Article and Find Full Text PDF

Background: Aging-related disease risk is exacerbated by obesity and physical inactivity. It is unclear how weight loss and increased activity improve risk in older adults. We aimed to determine the effects of diet-induced weight loss with and without exercise on insulin sensitivity, VO2peak, body composition, and physical function in older obese adults.

View Article and Find Full Text PDF

The nitrate-nitrite-NO pathway regulates NO synthase-independent vasodilation and NO signaling. Ingestion of inorganic nitrite has vasodilatory and blood pressure-lowering effects. Preclinical studies in rodent models suggest there may be a benefit of nitrite in lowering serum triglyceride levels and improving the metabolic syndrome.

View Article and Find Full Text PDF

Systemic hyperuricemia (HyUA) in obesity/type 2 diabetes facilitated by elevated activity of xanthine oxidoreductase (XOR), which is the sole source of uric acid (UA) in mammals, has been proposed to contribute to the pathogenesis of insulin resistance/dyslipidemia in obesity. Here, the effects of hepatocyte-specific ablation of , the gene encoding XOR (HXO), and whole-body pharmacologic inhibition of XOR (febuxostat) on obesity-induced insulin resistance/dyslipidemia were assessed. Deletion of hepatocyte substantially lowered liver and plasma UA concentration.

View Article and Find Full Text PDF

Accumulation of myeloid cells in the liver, notably dendritic cells (DCs) and monocytes/macrophages (MCs), is a major component of the metainflammation of obesity. However, the mechanism(s) stimulating hepatic DC/MC infiltration remain ill defined. Herein, we addressed the hypothesis that adipose tissue (AT) free fatty acids (FFAs) play a central role in the initiation of hepatic DC/MC accumulation, using a number of mouse models of altered FFA supply to the liver.

View Article and Find Full Text PDF

Objective: Reasons for the higher obesity prevalence in African American women (AAW) compared with Caucasian women (CW) are unknown. Energy expenditure and maximal aerobic capacity (VO max) are lower in AAW. It was hypothesized that these differences are explained by skeletal muscle characteristics, particularly mitochondrial content and function.

View Article and Find Full Text PDF

Obesity, a prevalent condition in adults and children, impairs bone marrow (BM) function. However, the underlying mechanisms are unclear. Here, we show that obese mice exhibit poor emergency immune responses in a toll-like receptor 4 (TLR4)-dependent manner.

View Article and Find Full Text PDF

Background: Skeletal muscle insulin resistance and reduced mitochondrial capacity have both been reported to be affected by aging. The purpose of this study was to compare the effects of calorie restriction-induced weight loss and exercise on insulin resistance, skeletal muscle mitochondrial content, and mitochondrial enzyme activities in older overweight to obese individuals.

Methods: Insulin-stimulated rates of glucose disposal (Rd) were determined using the hyperinsulinemic euglycemic clamp before and after completing 16 weeks of either calorie restriction to induce weight loss (N = 7) or moderate exercise (N = 10).

View Article and Find Full Text PDF

Leptin has potent effects on lipid metabolism in a number of peripheral tissues. In liver, an acute leptin infusion (~120 min) stimulates hepatic fatty acid oxidation (~30%) and reduces triglycerides (TG, ~40%), effects that are dependent on phosphoinositol-3-kinase (PI3K) activity. In the current study we addressed the hypothesis that leptin actions on liver-resident immune cells are required for these metabolic effects.

View Article and Find Full Text PDF

Background: Considerable debate continues to surround the concept of mitochondrial dysfunction in aging muscle. We tested the overall hypothesis that age per se does not influence mitochondrial function and markers of mitochondria quality control, that is, expression of fusion, fission, and autophagy proteins. We also investigated the influence of cardiorespiratory fitness (VO2max) and adiposity (body mass index) on these associations.

View Article and Find Full Text PDF

Objective: To determine effects of physical activity (PA) with diet-induced weight loss on energy metabolism in adults with severe obesity.

Methods: Adults with severe obesity (n = 11) were studied across 6 months of intervention, then compared with controls with less severe obesity (n = 7) or normal weight (n = 9). Indirect calorimetry measured energy metabolism during exercise and rest.

View Article and Find Full Text PDF

In obesity, adipose tissue (AT) and liver are infiltrated with Th-1 polarized immune cells, which are proposed to play an important role in the pathogenesis of the metabolic abnormalities of obesity. Aging is also associated with increased adiposity, but the effects of this increase on inflammation and associated metabolic dysfunction are poorly understood. To address this issue, we assessed insulin resistance (IR) andATand liver immunophenotype in aged, lean (AL) and aged, obese (AO) mice, all of whom were maintained on a standard chow diet (11% fat diet) throughout their lives.

View Article and Find Full Text PDF

Purpose: The goal of this study was to explore the effect of lifelong aerobic exercise (i.e., chronic training) on skeletal muscle substrate stores (intramyocellular triglyceride [IMTG] and glycogen), skeletal muscle phenotypes, and oxidative capacity (ox), in older endurance-trained master athletes (OA) compared with noncompetitive recreational younger (YA) athletes matched by frequency and mode of training.

View Article and Find Full Text PDF

Both Roux-en-Y gastric bypass (RYGB) surgery and exercise can improve insulin sensitivity in individuals with severe obesity. However, the impact of RYGB with or without exercise on skeletal muscle mitochondria, intramyocellular lipids, and insulin sensitivity index (SI) is unknown. We conducted a randomized exercise trial in patients (n = 101) who underwent RYGB surgery and completed either a 6-month moderate exercise (EX) or a health education control (CON) intervention.

View Article and Find Full Text PDF

Emerging evidence suggests that impaired regulation of adipocyte lipolysis contributes to the proinflammatory immune cell infiltration of metabolic tissues in obesity, a process that is proposed to contribute to the development and exacerbation of insulin resistance. To test this hypothesis in vivo, we generated mice with adipocyte-specific deletion of adipose triglyceride lipase (ATGL), the rate-limiting enzyme catalyzing triacylglycerol hydrolysis. In contrast to previous models, adiponectin-driven Cre expression was used for targeted ATGL deletion.

View Article and Find Full Text PDF

Background: Roux-en-Y gastric bypass (RYGB) surgery causes profound weight loss and improves insulin sensitivity (S(I)) in obese patients. Regular exercise can also improve S(I) in obese individuals; however, it is unknown whether exercise and RYGB surgery-induced weight loss would additively improve S(I) and other cardiometabolic factors.

Methods: We conducted a single-blind, prospective, randomized trial with 128 men and women who recently underwent RYGB surgery (within 1-3 months).

View Article and Find Full Text PDF

β-catenin regulates the establishment of hepatic metabolic zonation. To elucidate the functional significance of liver metabolic zonation in the chronically overfed state in vivo, we fed a high-fat diet (HFD) to hepatocyte-specific β-catenin transgenic (TG) and knockout (KO) mice. Chow-fed TG and KO mice had normal liver histologic findings and body weight.

View Article and Find Full Text PDF

Context: African-American women (AAW) have an increased risk of developing type 2 diabetes compared with Caucasian women (CW). Lower insulin sensitivity has been reported in AAW, but the reasons for this racial difference and the contributions of liver versus skeletal muscle are incompletely understood.

Objective: We tested the hypothesis that young, nonobese AAW manifest lower insulin sensitivity specific to skeletal muscle, not liver, and is accompanied by lower skeletal muscle mitochondrial oxidative capacity.

View Article and Find Full Text PDF

Despite the well-documented health benefits of ω-3 polyunsaturated fatty acids (PUFAs), their use in clinical management of hyperglycemia and obesity has shown little success. To better define the mechanisms of ω-3 PUFAs in regulating energy balance and insulin sensitivity, we deployed a transgenic mouse model capable of endogenously producing ω-3 PUFAs while reducing ω-6 PUFAs owing to the expression of a Caenorhabditis elegans fat-1 gene encoding an ω-3 fatty acid desaturase. When challenged with high-fat diets, fat-1 mice strongly resisted obesity, diabetes, hypercholesterolemia, and hepatic steatosis.

View Article and Find Full Text PDF

Sulfotransferase (SULT)-mediated sulfation represents a critical mechanism in regulating the chemical and functional homeostasis of endogenous and exogenous molecules. The cholesterol sulfotransferase SULT2B1b catalyzes the sulfoconjugation of cholesterol to synthesize cholesterol sulfate (CS). In this study, we showed that the expression of SULT2B1b in the liver was induced in obese mice and during the transition from the fasted to the fed state, suggesting that the regulation of SULT2B1b is physiologically relevant.

View Article and Find Full Text PDF

Objective: The link between a reduced capacity for skeletal muscle mitochondrial fatty acid oxidation (FAO) and lipotoxicity in human insulin resistance has been the subject of intense debate. The objective of this study was to investigate whether reduced FAO is associated with elevated acyl CoA, ceramide, and diacylglycerol (DAG) in severely obese insulin resistant subjects.

Methods: Muscle biopsies were conducted in lean (L, 22.

View Article and Find Full Text PDF