Introduction: The electron ionization cross section of water is one of the most important input in Monte Carlo studies of cellular radiobiological effects. Analytical cross section models of the binary-encounter type have the potential of reducing simulation time and facilitate application to a variety of biological materials (other than water). The Binary-Encounter-Bethe (BEB) and Binary-Encounter-Dipole (BED) models of NIST are perhaps the most popular of such models giving reliable results for atoms and molecules in the gas-phase over a wide energy range.
View Article and Find Full Text PDFTo calculate the yield of direct DNA damage induced by low energy electrons using Monte Carlo generated microdosimetric spectra at the nanometer scale and examine the influence of various simulation inputs. The potential of classical microdosimetry to offer a viable and simpler alternative to more elaborate mechanistic approaches for practical applications is discussed. Track-structure simulations with the Geant4-DNA low-energy extension of the Geant4 Monte Carlo toolkit were used for calculating lineal energy spectra in spherical volumes with dimensions relevant to double-strand-break (DSB) induction.
View Article and Find Full Text PDF