Publications by authors named "Stefanos Kikionis"

The treatment of second-degree burn wounds presents a significant clinical challenge, often characterized by prolonged healing times and risk of complications. In this study, the wound healing potential of bioactive marine sulfated polysaccharides ulvan and carrageenan formulated in gels at concentrations of 1.5%, 5.

View Article and Find Full Text PDF

and French maritime pine bark (Pycnogenol™) extracts are considered promising therapeutic agents in wound healing. This study explores the healing efficacy of composite dressings containing these extracts, aiming to enhance their stability and effectiveness, utilizing a low-temperature vacuum method for producing Sodium Alginate-Maltodextrin gel dressings. Surgical wounds were inflicted on SKH-hr2 hairless mice.

View Article and Find Full Text PDF

Periodontitis is a microbially-induced inflammation of the periodontium that is characterized by the destruction of the periodontal ligament (PDL) and alveolar bone and constitutes the principal cause of teeth loss in adults. Periodontal tissue regeneration can be achieved through guided tissue/bone regeneration (GTR/GBR) membranes that act as a physical barrier preventing epithelial infiltration and providing adequate time and space for PDL cells and osteoblasts to proliferate into the affected area. Electrospun nanofibrous scaffolds, simulating the natural architecture of the extracellular matrix (ECM), have attracted increasing attention in periodontal tissue engineering.

View Article and Find Full Text PDF

Echinochrome A (EchA), a marine bioactive pigment isolated from various sea urchin species, is the active agent of the clinically approved drug Histochrome. EchA is currently only available in the form of an isotonic solution of its di- and tri-sodium salts due to its poor water solubility and sensitivity to oxidation. Electrospun polymeric nanofibers have lately emerged as promising drug carriers capable of improving the dissolution and bioavailability of drugs with limited water solubility.

View Article and Find Full Text PDF

In search of alternative and sustainable sources of collagenous materials for biomedical applications, the scales of five Mediterranean fish species-fished in high tonnage in the Mediterranean region since they represent popular choices for the local diet-as well as those of the Atlantic salmon for comparison purposes, were comparatively studied for their acid- and pepsin-soluble collagen content. Fish scales that currently represent a discarded biomass of no value could be efficiently exploited for the production of a high added-value biomaterial. The isolated collagenous materials, which showed the typical electrophoretic patterns of type I collagen, were morphologically and physicochemically characterized.

View Article and Find Full Text PDF

Keloids are skin fibroproliferative disorders, resulting from abnormal healing of deep cutaneous injuries. Cryosurgery, the most common treatment for keloids, causes skin traumas. Even though the clinical practice of cryosurgery has increased, effective wound healing therapy is still lacking.

View Article and Find Full Text PDF
Article Synopsis
  • Marine biopolymers from seaweeds and marine animals have diverse structures and beneficial biological activities, making them valuable for biomedical applications due to their high biocompatibility and biodegradability.
  • The advancement of electrospinning technology allows for the creation of nonwoven nanofibrous scaffolds that mimic the natural extracellular matrix, enhancing surface area and efficacy for various functions.
  • Recent literature explores the use of marine biopolymer-based electrospun nanofibers in applications such as tissue engineering, drug delivery, cell scaffolding, bioadhesives, and wound dressings, highlighting their multifunctional characteristics and tunable mechanical properties.
View Article and Find Full Text PDF

Nowadays, biofouling is responsible for enormous economic losses in the maritime sector, and its treatment with conventional antifouling paints is causing significant problems to the environment. Biomimetism and green chemistry approaches are very promising research strategies for the discovery of new antifouling compounds. This study focused on the red alga which is known as a producer of bioactive secondary metabolites.

View Article and Find Full Text PDF

Marine biofouling is an epibiotic biological process that affects almost any kind of submerged surface, causing globally significant economic problems mainly for the shipping industry and aquaculture companies, and its prevention so far has been associated with adverse environmental effects for non-target organisms. Previously, we have identified bromosphaerol (), a brominated diterpene isolated from the red alga , as a promising agent with significant antifouling activity, exerting strong anti-settlement activity against larvae of () and very low toxicity. The significant antifouling activity and low toxicity of bromosphaerol () motivated us to explore its chemistry, aiming to optimize its antifouling potential through the preparation of a number of analogs.

View Article and Find Full Text PDF

Quercetin, a flavonoid with possible neuroprotective action has been recently suggested for the early-stage treatment of Alzheimer's disease. The low solubility and extended first pass effect render quercetin unsuitable for oral administration. Alternatively, brain targeting is more feasible with nasal delivery, by-passing, non-invasively, Blood-Brain Barrier and ensuring rapid onset of action.

View Article and Find Full Text PDF

Acute radiodermatitis is the most common side effect in non-melanoma skin cancer patients undergoing radiotherapy. Nonetheless, despite the ongoing progress of clinical trials, no effective regimen has been found yet. In this study, a non-woven patch, comprised of electrospun polymeric micro/nanofibers loaded with an aqueous extract of bark (PHBE), was fabricated and clinically tested for its efficacy to prevent radiodermatitis.

View Article and Find Full Text PDF

Nisin is an attractive alternative to chemical preservatives in the food industry. It is a cationic peptide of 34 amino acid residues that exhibits antimicrobial activity against Gram-positive bacteria. To ensure nisin stability in food matrices, new nisin-loaded ulvan particles were developed by the complexation method.

View Article and Find Full Text PDF

Hybrid composites of synthetic and natural polymers represent materials of choice for bone tissue engineering. Ulvan, a biologically active marine sulfated polysaccharide, is attracting great interest in the development of novel biomedical scaffolds due to recent reports on its osteoinductive properties. Herein, a series of hybrid polycaprolactone scaffolds containing ulvan either alone or in blends with κ-carrageenan and chondroitin sulfate was prepared and characterized.

View Article and Find Full Text PDF

Inflammation is part of the organism's response to deleterious stimuli, such as pathogens, damaged cells, or irritants. Macrophages orchestrate the inflammatory response obtaining different activation phenotypes broadly defined as M1 (pro-inflammatory) or M2 (homeostatic) phenotypes, which contribute to pathogen elimination or disease pathogenesis. The type and magnitude of the response of macrophages are shaped by endogenous and exogenous factors and can be affected by nutrients or therapeutic agents.

View Article and Find Full Text PDF

Construction of extracellular matrix-mimetic nanofilms has considerable potential in biomedical and nanomedicinal fields. In this work, we fabricated neurocompatible layer-by-layer (LbL) films based on ulvan (ULV), a highly sulfated polysaccharide having compositional similarity to glycosaminoglycans that play important functional roles in the brain. ULV was durably assembled as a film with chitosan, another marine-derived polysaccharide, and the film enabled the stable adhesion of primary hippocampal neurons with high viability, comparable to the conventional poly-d-lysine surface.

View Article and Find Full Text PDF

Ulvan, a bioactive natural sulfated polysaccharide, and gelatin, a collagen-derived biopolymer, have attracted interest for the preparation of biomaterials for different biomedical applications, due to their demonstrated compatibility for cell attachment and proliferation. Both ulvan and gelatin have exhibited osteoinductive potential, either alone or in combination with other materials. In the current work, a series of novel hybrid scaffolds based on crosslinked ulvan and gelatin was designed, prepared and characterized.

View Article and Find Full Text PDF

Furosemide, a chloride channel blocker ordinarily used as a high-ceiling or loop diuretic, is practically insoluble in water and dilute acids. Due to its acidic nature, furosemide is mostly absorbed in the stomach and in the upper small intestine. Efforts have focused on the development of sustained release systems of furosemide in order to improve the effectiveness of the drug, which exhibits poor aqueous solubility and poor permeability.

View Article and Find Full Text PDF

Skin inflammation is the most common symptom in dermatological diseases. It is usually treated by topically applied products, such as creams, gels and lotions. Skin dressings offer a promising alternative as they are endowed with more controlled administration conditions.

View Article and Find Full Text PDF

Background: Mosquitoes are hematophagous insects of major public health concern, serving as vectors of many diseases. Available products for personal protection against mosquitoes lack adequate efficacy and in most cases need to be reapplied or replaced frequently. In recent years, the encapsulation of the active repellents in various matrices has arisen as an alternative method for the development of new-generation repellent systems.

View Article and Find Full Text PDF

Modified release tablet formulations with melatonin (MLT) are clinically more useful in initiating and maintaining sleep in elderly insomniacs, compared with those designed for immediate release. Aiming at the modified release of MLT, monolayered and 3-layered tablets, incorporating nanofibrous mats composed of cellulose acetate and polyvinylpyrrolidone loaded with MLT, were prepared and studied. In vitro dissolution profiles of MLT in gastrointestinal-like fluids revealed tableting pressure/pH-dependence.

View Article and Find Full Text PDF

Objective: Aiming at the modified release of melatonin (MLT), electrospun-MLT loaded nanofibers, filled into hard gelatin and DRcapsTM capsules, were used as formulants.

Methods: Cellulose acetate, polyvinylpyrrolidinone and hydroxypropylmethylcellusose (HPMC 2910) were used for the preparation of the fiber matrices through electrospinning. The in vitro modified release profile of MLT from the fabricated matrices in gastrointestinal-like fluids was studied.

View Article and Find Full Text PDF

The aim of the present work was to study the encapsulation of L. essential oil (oregano EO) in β-cyclodextrin (β-CD) inclusion complexes (ICs), using the co-precipitation method. The formed β-CD-oregano EO ICs were characterized by diverse methods, such as Dynamic Light Scattering (DLS), FT-IR spectroscopy, Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), Nuclear Magnetic Resonance (NMR) spectroscopy and Scanning Electron Microscopy (SEM).

View Article and Find Full Text PDF

New systems for the controlled release of 1,7-dioxaspiro[5.5]undecane and (Z)-7-tetradecenal, the sex pheromones of olive fruit fly, Bactrocera oleae, and olive moth, Prays oleae, respectively, were developed utilizing electrospun micro/nanofiber matrices from inexpensive, biodegradable polymers, namely polycaprolactone, cellulose acetate and polyhydroxybutyrate. The incorporation of the pheromones in 5, 10 and 20% w/w in the electrospinning polymer blends allowed for the production of fiber mats with variable loading levels and release rates, ensuring however in all cases the release of pheromones for more than 16 weeks.

View Article and Find Full Text PDF

Tetronic acids, 4-hydroxy-5H-furan-2-ones, constitute a class of heterocyclic compounds with potent biological and pharmacological activity. The beta, beta'-tricarbonyl moiety plays an integral role in biological systems and forms a variety of metal complexes. In this report, we present the complexation reactions of 3-ethoxycarbonyl tetronic acids with acetates and chlorides of Cu(II) and Co(II).

View Article and Find Full Text PDF