Publications by authors named "Stefano Trapani"

Self-assembly of macromolecules into higher-order symmetric structures is fundamental for the regulation of biological processes. Higher-order symmetric structure self-assembly by the gene expression machinery, such as bacterial DNA-dependent RNA polymerase (RNAP), has never been reported before. Here, we show that the stress-response σ factor from the human pathogen, Mycobacterium tuberculosis, induces the RNAP holoenzyme oligomerization into a supramolecular complex composed of eight RNAP units.

View Article and Find Full Text PDF

Nanoviruses are plant multipartite viruses with a genome composed of six to eight circular single-stranded DNA segments. The distinct genome segments are encapsidated individually in icosahedral particles that measure ≈18 nm in diameter. Recent studies on the model species Faba bean necrotic stunt virus (FBNSV) revealed that complete sets of genomic segments rarely occur in infected plant cells and that the function encoded by a given viral segment can complement the others across neighbouring cells, presumably by translocation of the gene products through unknown molecular processes.

View Article and Find Full Text PDF

Arrestins interact with G protein-coupled receptors (GPCRs) to stop G protein activation and to initiate key signaling pathways. Recent structural studies shed light on the molecular mechanisms involved in GPCR-arrestin coupling, but whether this process is conserved among GPCRs is poorly understood. Here, we report the cryo-electron microscopy active structure of the wild-type arginine-vasopressin V2 receptor (V2R) in complex with β-arrestin1.

View Article and Find Full Text PDF

Tuberculosis claims significantly more than one million lives each year. A feasible way to face the issue of drug resistance is the development of new antibiotics. Bacterial uridine 5'-monophosphate (UMP) kinase is a promising target for novel antibiotic discovery as it is essential for bacterial survival and has no counterpart in human cells.

View Article and Find Full Text PDF

The antidiuretic hormone arginine-vasopressin (AVP) forms a signaling complex with the V2 receptor (V2R) and the G protein, promoting kidney water reabsorption. Molecular mechanisms underlying activation of this critical G protein-coupled receptor (GPCR) signaling system are still unknown. To fill this gap of knowledge, we report here the cryo-electron microscopy structure of the AVP-V2R-G complex.

View Article and Find Full Text PDF

In Myxococcus xanthus, directed movement is controlled by pole-to-pole oscillations of the small GTPase MglA and its GAP MglB. Direction reversals require that MglA is inactivated by MglB, yet paradoxically MglA and MglB are located at opposite poles at reversal initiation. Here we report the complete MglA/MglB structural cycle combined to GAP kinetics and in vivo motility assays, which uncovers that MglA is a three-state GTPase and suggests a molecular mechanism for concerted MglA/MglB relocalizations.

View Article and Find Full Text PDF

Rotaviruses, like other non-enveloped, double-strand RNA viruses, package an RNA-dependent RNA polymerase (RdRp) with each duplex of their segmented genomes. Rotavirus cell entry results in loss of an outer protein layer and delivery into the cytosol of an intact, inner capsid particle (the "double-layer particle," or DLP). The RdRp, designated VP1, is active inside the DLP; each VP1 achieves many rounds of mRNA transcription from its associated genome segment.

View Article and Find Full Text PDF

The Broad bean stain virus (BBSV) is a member of the genus Comovirus infecting Fabaceae. The virus is transmitted through seed and by plant weevils causing severe and widespread disease worldwide. BBSV has a bipartite, positive-sense, single-stranded RNA genome encapsidated in icosahedral particles.

View Article and Find Full Text PDF

Industrial plants are going to face a deep renewing process within the Industry 4.0 scenario. New paradigms of production lines are foreseen in the very near future, characterized by a strict collaboration between humans and robots and by a high degree of flexibility.

View Article and Find Full Text PDF

Collision detection is a fundamental issue for the safety of a robotic cell. While several common methods require specific sensors or the knowledge of the robot dynamic model, the proposed solution is constituted by a virtual collision sensor for industrial manipulators, which requires as inputs only the motor currents measured by the standard sensors that equip a manipulator and the estimated currents provided by an internal dynamic model of the robot (i.e.

View Article and Find Full Text PDF

A general-purpose and simple expression for the coefficients of symmetry adapted functions referred to conveniently oriented symmetry axes is given for all rotational point groups. The expression involves the computation of reduced Wigner-matrix elements corresponding to an angle specific to each group and has the computational advantage of leading to Fourier-space TEM (transmission electron microscopy) reconstruction procedures involving only real valued unknowns. Using this expression, a protocol for ab initio view and center assignment and reconstruction so far used for icosahedral particles has been tested with experimental data in other point groups.

View Article and Find Full Text PDF

Arabis mosaic virus (ArMV) and Grapevine fanleaf virus (GFLV) are two picorna-like viruses from the genus Nepovirus, consisting in a bipartite RNA genome encapsidated into a 30 nm icosahedral viral particle formed by 60 copies of a single capsid protein (CP). They are responsible for a severe degeneration of grapevines that occurs in most vineyards worldwide. Although sharing a high level of sequence identity between their CP, ArMV is transmitted exclusively by the ectoparasitic nematode Xiphinema diversicaudatum whereas GFLV is specifically transmitted by the nematode X.

View Article and Find Full Text PDF

I'm your Venus: the crystal structure of the human methylamine-induced form of α(2)-macroglobulin (α(2)M) shows its large central cavity can accommodate two medium-sized proteinases. Twelve major entrances provide access for small substrates to the cavity and the still-active trapped "prey". The structure unveils the molecular basis of the unique "venus flytrap" mechanism of α(2)M.

View Article and Find Full Text PDF

Many animal and plant viruses rely on vectors for their transmission from host to host. Grapevine fanleaf virus (GFLV), a picorna-like virus from plants, is transmitted specifically by the ectoparasitic nematode Xiphinema index. The icosahedral capsid of GFLV, which consists of 60 identical coat protein subunits (CP), carries the determinants of this specificity.

View Article and Find Full Text PDF

The combination of transmission electron microscopy with X-ray diffraction data is usually limited to relatively large particles. Here, the approach is continued one step further by utilizing negative staining, a technique that is of wider applicability than cryo-electron microscopy, to produce models of medium-size proteins suitable for molecular replacement. The technique was used to solve the crystal structure of the dodecameric type II dehydroquinase enzyme from Candida albicans (approximately 190 kDa) and that of the orthologous Streptomyces coelicolor protein.

View Article and Find Full Text PDF
AMoRe: classical and modern.

Acta Crystallogr D Biol Crystallogr

January 2008

An account is given of the latest developments of the AMoRe package: new rotational search algorithms, exploitation of noncrystallographic symmetry, generation and use of ensemble models and interactive graphical molecular replacement.

View Article and Find Full Text PDF

The metric of the SO(3) group of rotations can be used to define the angular resolution of a function of rotations. The resolution is related to the degree of the highest representation present in the expansion of the function in terms of Wigner functions. The peculiar non-Euclidean metric of the rotation domain, however, implies that the terms which effectively contribute to the expansion vary through two-dimensional sections of the rotation domain and are within limiting resolution circles in two-dimensional reciprocal sections.

View Article and Find Full Text PDF

A method for finding the center of cryo-EM images which correspond to the projections of a symmetric 3D structure, based on mathematical properties of symmetry adapted functions and the Fourier-Bessel transform, is presented. It is a model independent one-step procedure with no parameters to be chosen by the user. The proposed method is tested in one synthetic tetrahedral case with different noise levels and in two real cases with D7 and icosahedral symmetries.

View Article and Find Full Text PDF

The FFT calculation of spherical harmonics, Wigner D matrices and rotation function has been extended to all angular variables in the AMoRe molecular replacement software. The resulting code avoids singularity issues arising from recursive formulas, performs faster and produces results with at least the same accuracy as the original code. The new code aims at permitting accurate and more rapid computations at high angular resolution of the rotation function of large particles.

View Article and Find Full Text PDF

A major effort has been made by the structural biology community to develop user-friendly software for the use of biologists. However, structural projects become more and more challenging and their solution often relies on a combination of information from various sources. Here, it is described how X-ray data, normal-mode analysis (NMA) and electron-microscopy (EM) data can be successfully combined in order to obtain a molecular-replacement (MR) solution for crystal structures containing multimeric molecules.

View Article and Find Full Text PDF

Carbohydrate-protein interactions play a key role in many biological processes. Cramoll is a lectin purified from Cratylia mollis seeds that is taxonomically related to concanavalin A (Con A). Although Cramoll and Con A have the same monosaccharide specificity, they have different glycoprotein binding profiles.

View Article and Find Full Text PDF

The binding of MgATP and fructose-6-phosphate to phosphofructokinase-2 from Escherichia coli induces conformational changes that result in significant differences in the x-ray-scattering profiles compared with the unligated form of the enzyme. When fructose- 6-phosphate binds to the active site of the enzyme, the pair distribution function exhibits lower values at higher distances, indicating a more compact structure. Upon binding of MgATP to the allosteric site of the enzyme, the intensity at lower angles increases as a consequence of tetramer formation, but differences along higher angles also suggest changes at the tertiary structure level.

View Article and Find Full Text PDF