The coherence of light has been proposed as a quantum-mechanical control for enhancing light-harvesting efficiency. In particular, optical coherence can be manipulated by changing either the polarization state or the spectral phase of the light. Here, we show that, in weak light, light-harvesting efficiency cannot be controlled using any form of optical coherence in molecular light-harvesting systems and, more broadly, those comprising orientationally disordered subunits and operating on longer-than-ultrafast time scales.
View Article and Find Full Text PDFCoherence-enhanced light harvesting has not been directly observed experimentally, despite theoretical evidence that coherence can significantly enhance light-harvesting performance. The main experimental obstacle has been the difficulty in isolating the effect of coherence in the presence of confounding variables. Recent proposals for externally controlling coherence by manipulating the light's degree of polarization showed that coherent efficiency enhancements would be possible, but they were restricted to light-harvesting systems weakly coupled to their environment.
View Article and Find Full Text PDFSeveral kinds of coherence have recently been shown to affect the performance of light-harvesting systems, in some cases significantly improving their efficiency. Here, we classify the possible mechanisms of coherent efficiency enhancements, based on the types of coherence that can characterize a light-harvesting system and the types of processes these coherences can affect. We show that enhancements are possible only when coherences and dissipative effects are best described in different bases of states.
View Article and Find Full Text PDF