Publications by authors named "Stefano Todisco"

Non-targeted NMR is widely accepted as a powerful and robust analytical tool for food control. Nevertheless, standardized procedures based on validated methods are still needed when a non-targeted approach is adopted. Interlaboratory comparisons carried out in recent years have demonstrated the statistical equivalence of spectra generated by different instruments when the sample was prepared by the same operator.

View Article and Find Full Text PDF
Article Synopsis
  • Crohn's disease (CD) is an inflammatory bowel disease that can affect the gastrointestinal tract and cause complications outside of it, and some patients have shown adverse effects after receiving the Pfizer-BioNTech mRNA vaccine.
  • Following vaccination, some CD patients have experienced a reduced effectiveness of the biological drug Adalimumab and a worsening of their condition, correlated with changes in intestinal permeability and protein expression.
  • The study aims to explore the effects of the SARS-CoV-2 Spike protein, particularly through extracellular vesicles, on the onset of Crohn's disease exacerbations and the potential impact on existing treatments.
View Article and Find Full Text PDF

A series of hard-template-derived hollow mesoporous organosilica nanoparticles (HMONs) with pyridine-2,6-bis-imidazolium frameworks have been described for the first time. As a part of the investigation, to evaluate the effects of the hard template nature, the Si/CTAB and organosilica/TEOS molar ratios, and the stepwise addition of precursors, four reaction conditions denoted as methods A-D were designed. In the presence of polystyrene latex as a hard template, the HMONs that we wished to synthesize were not yielded with a Si/CTAB molar ratio of 3 (method A), but we could synthesize the desired HMONs with a Si/CTAB molar ratio of 9 and an organosilica : TEOS ratio of 1 : 99 (method B).

View Article and Find Full Text PDF

The peculiar behavior of arsenoplatin-1, ([Pt(µ-NHC(CH)O)ClAs(OH)], AP-1), in aqueous solution and the progressive appearance of a characteristic and intense blue color led us to carry out a more extensive investigation to determine the nature of this elusive chemical species, which we named "AsPt blue". A multi-technique approach was therefore implemented to describe the processes involved in the formation of AsPt blue, and some characteristic features of this intriguing species were revealed.

View Article and Find Full Text PDF

A new type of aggregation-induced emission (AIE) luminogen containing a dimeric metal fragment and two or three phthalazine ligands is described, which shows dynamic motions of ligands around the metal centers in solution. Based on the variable-temperature and EXSY NMR spectroscopy data, X-ray crystallography structures, and computational results, three different pathways (i.e.

View Article and Find Full Text PDF

subsp. ST53 () is a pathogenic bacterium causing one of the most severe plant diseases currently threatening the olive-growing areas of the Mediterranean, the Olive Quick Decline Syndrome (OQDS). The majority of the olive cultivars upon infections more or less rapidly develop severe desiccation phenomena, while few are resistant (e.

View Article and Find Full Text PDF

Olive quick decline syndrome (OQDS) is a disease that has been seriously affecting olive trees in southern Italy since around 2009. During the disease, caused by subsp. sequence type ST53 (), the flow of water and nutrients within the trees is significantly compromised.

View Article and Find Full Text PDF

A new covalent organic framework (COF) based on imine bonds was assembled from 2-(4-formylphenyl)-5-formylpyridine and 1,3,6,8-tetrakis(4-aminophenyl)pyrene, which showed an interesting dual-pore structure with high crystallinity. Postmetallation of the COF with Pt occurred selectively at the N donor (imine and pyridyl) in the larger pores. The metallated COF served as an excellent recyclable heterogeneous photocatalyst for decarboxylative difluoroalkylation and oxidative cyclization reactions.

View Article and Find Full Text PDF

The first adducts of NHCs (=N-heterocyclic carbenes) with aromatic polyphosphorus complexes are reported. The reactions of [Cp*Fe(η -P )] (1) (Cp*=pentamethyl-cyclopentadienyl) with IMe (=1,3,4,5-tetramethylimidazolin-2-ylidene), IMes (=1,3-bis(2,4,6-trimethylphenyl)-imidazolin-2-ylidene) and IDipp (=1,3-bis(2,6-diisopropylphenyl)-imidazolin-2-ylidene) led to the corresponding neutral adducts which can be isolated in the solid state. However, in solution, they quickly undergo a dissociative equilibrium between the adduct and 1 including the corresponding NHC.

View Article and Find Full Text PDF

Non-targeted NMR-based approach has received great attention as a rapid method for food product authenticity assessment. The availability of a database containing many comparable NMR spectra produced by different spectrometers is crucial to develop functional classifiers able to discriminate rapidly the commodity class of a given food product. Nevertheless, variability in spectrometer features may hamper the production of comparable spectra due to inherent variations in signal resolution.

View Article and Find Full Text PDF
Article Synopsis
  • NMR spectroscopy is being used to precisely measure organic molecules, with Hydrogen nucleus quantification (H qNMR) emerging as the primary method for assessing chemical purity.
  • A collaborative study involving 13 labs was conducted to validate the H qNMR method, measuring the purity of three samples certified by conventional methods.
  • Results showed that H qNMR measurements matched reference values closely, demonstrating its reliability and accuracy comparable to traditional measurement techniques.
View Article and Find Full Text PDF

Two-dimensional urea- and thiourea-containing covalent organic frameworks (COFs) were synthesized at ambient conditions at large scale within 1 h in the absence of an acid catalyst. The site-isolated urea and thiourea in the COF showed enhanced catalytic efficiency as a hydrogen-bond-donating organocatalyst compared to the molecular counterparts in epoxide ring-opening reaction, aldehyde acetalization, and Friedel-Crafts reaction. The COF catalysts also had excellent recyclability.

View Article and Find Full Text PDF

The reaction of the dinuclear phosphinito bridged complex [(PHCy2)Pt(μ-PCy2){κ2P,O-μ-P(O)Cy2}Pt(PHCy2)](Pt-Pt) (1) with phenylacetylene affords the η1-alkenyl-μ,η1:η2-alkynyl complex [(η1-trans-(Ph)HC[double bond, length as m-dash]CH)(PHCy2)Pt(μ-PCy2)(μ,η1:η2-PhC[triple bond, length as m-dash]C)Pt{κP-P(O)Cy2}(PHCy2)] (4) displaying a σ-bonded 2-phenylethenyl ligand and an alkynyl (μ-κCα:η2) bridge between the platinum atoms. Complex 4 was shown to form in two steps: initially, the attack of the first molecule of phenylacetylene gives the σ-acetylide complex [(PHCy2)(η1-PhC[triple bond, length as m-dash]C)Pt1(μ-PCy2)Pt2(PHCy2){κP-P(OH)Cy2}](Pt-Pt) (5) featuring an intramolecular π-type hydrogen bond between the POH and the C[triple bond, length as m-dash]C triple bond; fast reaction of 5 with a second molecule of phenylacetylene results in the oxidative addition of the terminal C-H bond of the second alkyne to Pt1 that, after rearrangements, leads to 4. When left in solution for two weeks, complex 4 spontaneously isomerizes completely to [(PHCy2)(η1-trans-(Ph)HC[double bond, length as m-dash]CH)Pt(μ-PCy2){κ2P,O-μ-P(O)Cy2}Pt(η1-PhC[triple bond, length as m-dash]C)(PHCy2)] (7) displaying a 2-phenylethenyl ligand and a phenylethynyl group both σ-bonded to the metal.

View Article and Find Full Text PDF

Nuclear Magnetic Resonance (NMR) is an analytical technique extensively used in almost every chemical laboratory for structural identification. This technique provides statistically equivalent signals in spite of using spectrometer with different hardware features and is successfully used for the traceability and quantification of analytes in food samples. Nevertheless, to date only a few internationally agreed guidelines have been reported on the use of NMR for quantitative analysis.

View Article and Find Full Text PDF

The reaction between [NnBu4][(C6F5)2PtII(μ-PPh2)2PtIV(C^N)(I)2] (C^N = κ2-N,C-benzoquinolinate, 1) and (i) bidentate S^S, N^S and O^O anionic ligands or (ii) monodentate S- N- or O-based anionic ligands was studied in order to investigate the factors that may guarantee the stability of Pt(ii),Pt(iv) mixed-valence dinuclear phosphanido complexes. While reactions of 1 with S^S or N^S ligands afforded stable Pt(ii),Pt(iv) species of general formula [(C6F5)2PtII(μ-PPh2)2PtIV(C^N)(L^S)]x- [(L^S)(x-1) = 2-mercaptopyrimidinate (pymS-), 2-mercaptopyridinate (pyS-), dimethyldithiocarbamate (Me2NCS2-), ethyl xanthogenate (EtOCS2-) and 1,2-benzenedithiolate (PhS22-)], the reaction of 1 with the O^O ligand sodium acetylacetonate gave several products, and no pure Pt(ii),Pt(iv) complex could be isolated. The reaction of monodentate ligands such as PhS-, OH- or N3- with 1 led to a stable Pt(ii),Pt(iv) complex only in the case of N3-.

View Article and Find Full Text PDF

31P and 195Pt solid state NMR spectra of anti-[(PHCy)ClPt(μ-PCy2)2Pt(PHCy)Cl] (3) and [(PHCy2)Pt(μ-PCy2)(κ2P,O-μ-POCy2)Pt(PHCy2)] (Pt-Pt) (4) were recorded under cross polarization/magic-angle spinning conditions (31P) or with the cross polarization/Carr-Purcell-Meiboom-Gill pulse sequence (195Pt) and compared to the data obtained by relativistic DFT calculations of 31P and 195Pt CS tensors and isotropic shielding at the ZORA spin-orbit level. A good agreement with the experimental results was found and it was possible to rationalize the chemical shift differences of 195Pt and 31P nuclei between compounds 3 and 4 as mostly due to a change (in opposite directions for 195Pt and 31P) of the principal component of the shielding tensor perpendicular to the molecular plane defined by the Pt and P atoms. Paramagnetic and spin-orbit terms were found to be the most important contributions to 195Pt and 31P shielding.

View Article and Find Full Text PDF

Reaction of [Pt(κ-C,N-ppy)(dmso)Cl], 1 (Hppy = 2-phenylpyridine), with Na[HB(mb)] (Hmb = 2-mercapto-benzimidazole) smoothly afforded the complex {[(κ-S,B,S-HB(mb)]Pt(κ-C,N-ppy)H}, 2, featuring a strong reverse-dative Pt → B σ interaction in the solid state. When dissolved in thf (or acetone) solution, 2 undergoes a reversible Pt-H bond activation, establishing an equilibrium between the hexacoordinated 2 and the tetracoordinate complex {[(κ-S,S-HB(mb)]Pt(κ-C,N-ppy)}, 3, as ascertained by multinuclear NMR. Hydrolysis of the B-N bond in 2/3 resulted ultimately in the formation of a dimeric half-lantern platinum(II,II) complex [{Pt(κ-C,N-ppy)(μ-κ-N,S-mb)}], 4.

View Article and Find Full Text PDF

The design of hybrid organic/inorganic nanostructures with controlled assembly drives the development of materials with new or improved properties and superior performances. In this paper, the surface and internal structure of hybrid ZnO poly-N-vinylpyrrolidone (ZnO/PVP) mesocrystals are investigated in detail and correlated with their emitting properties. A photoluminescence study at room temperature reveals that the as-synthesized particles show a remarkable ultraviolet (UV) emission, whereas an emission from defects in the visible region is not observed.

View Article and Find Full Text PDF

Two Co(I) hydrides containing the tripodal polyphosphine ligand EP, (κ-EP)Co(H) [E(CHCHPPh); E = N (1), P (2)], have been exploited as ammonia borane (NHBH, AB) dehydrogenation catalysts in THF solution at T = 55 °C. The reaction has been analyzed experimentally through multinuclear (B, P{H}, H) NMR and IR spectroscopy, kinetic rate measurements, and kinetic isotope effect (KIE) determination with deuterated AB isotopologues. Both complexes are active in AB dehydrogenation, albeit with different rates and efficiency.

View Article and Find Full Text PDF

By employing silver salts with a weakly coordinating anion Ag[A] ([A]=[FAl{OC F } ], [Al{OC(CF ) } ]), two phosphaalkynes could be coordinated side-on to a bare silver(I) center to form the unprecedented homoleptic complexes [Ag(η -P≡CtBu) ][FAl{OC F } ] (1) and [Ag(η -P≡CtBu) ][Al{OC(CF ) } ] (2). DFT calculations show that the perpendicular arrangement in 1 is the minimum energy structure of the coordination of the two phosphaalkynes to a silver atom, whereas for 2 a unique square-planar coordination mode of the phosphaalkynes at Ag was found. Reactions with donor molecules yield the trigonally planar coordinated silver salts [((CH ) CO)Ag(η -P≡CtBu) ][FAl{OC F } ] (3) and [(C H ) Ag(η -P≡CtBu)][FAl{OC F } ] (4).

View Article and Find Full Text PDF

Reaction between the phosphinito bridged diplatinum species [(PHCy2 )Pt(μ-PCy2 ){κ(2) P,O-μ-P(O)Cy2 }Pt(PHCy2 )](Pt-Pt) (1), and (trimethylsilyl)acetylene at 273 K affords the σ-acetylide complex [(PHCy2 )(η(1) -Me3 SiC≡C)Pt(μ-PCy2 )Pt(PHCy2 ){κP-P(OH)Cy2 }](Pt-Pt) (2) featuring an intramolecular π-type hydrogen bond. Scalar and dipolar couplings involving the POH proton were detected by 2D NMR experiments. Relativistic DFT calculations of the geometry, relative energy, and NMR properties of model systems of 2 confirmed the structural assignment and allowed the energy of the π-type hydrogen bond to be estimated (ca.

View Article and Find Full Text PDF

A mixture of the asymmetric complexes of formula [(RF)2Pt(μ-Ph2PO)(μ-PPh2)Pt(μ-PPh2)2Pt(solv)(solv')] [(1-(solv)(solv')] (solv, solv' = acetone, H2O, CH3CN) has been prepared by reaction of [(RF)2Pt(II)(μ-PPh2)2Pt(II)(μ-PPh2)2Pt(II)(NCCH3)2] with AgClO4 in CH3CN/acetone. The lability of the Pt-solvent bonds allows the displacement of the coordinated solvent molecules by dppm or Cl(-) and the isolation of the tri- or hexanuclear phosphanido/phosphinito Pt(ii) complexes [(C6F5)2Pt(μ-PPh2)(μ-PPh2O)Pt(μ-PPh2)2Pt(dppm)] (2) or [NBu4]2[(C6F5)2Pt(μ-PPh2)(μ-PPh2O)Pt(μ-PPh2)2Pt(μ-Cl)2Pt(μ-PPh2)2Pt(μ-PPh2)(μ-PPh2O)Pt(C6F5)2] (as a mixture of the two possible isomers 4a and 4b). Complex 2 reacts with AgClO4 to form the tetranuclear derivative [(C6F5)2Pt(μ-PPh2)(μ-PPh2O)Pt(μ-PPh2)2Pt(dppm)Ag(OClO3)] (3), which displays two Pt-Ag donor-acceptor bonds.

View Article and Find Full Text PDF

Multinuclear ((31)P, (195)Pt, (19)F) solid-state NMR experiments on (nBu4N)2[(C6F5)2Pt(μ-PPh2)2Pt(C6F5)2] (1), [(C6F5)2Pt(μ-PPh2)2Pt(C6F5)2](Pt-Pt) (2), and cis-Pt(C6F5)2(PHPh2)2 (3) were carried out under cross-polarization/magic-angle-spinning conditions or with the cross-polarization/Carr-Purcell Meiboom-Gill pulse sequence. Analysis of the principal components of the (31)P and (195)Pt chemical shift (CS) tensors of 1 and 2 reveals that the variations observed comparing the isotropic chemical shifts of 1 and 2, commonly referred to as "ring effect", are mainly due to changes in the principal components oriented along the direction perpendicular to the Pt2P2 plane. DFT calculations of (31)P and (195)Pt CS tensors confirmed the tensor orientation proposed from experimental data and symmetry arguments and revealed that the different values of the isotropic shieldings stem from differences in the paramagnetic and spin-orbit contributions.

View Article and Find Full Text PDF

The reactivity of dichloroplatinum(II) complexes containing thioether-functionalized bis(diphenylphosphanyl)amines of formula (Ph2P)2N(CH2)2SR (R = (CH2)5CH3, CH2Ph) toward group 6 carbonylmetalates Na[M(CO)3Cp] (M = Mo or W, Cp = cyclopentadienyl) was explored. Reactions with two or more equivalents of Na[M(CO)3Cp] (M = Mo or W) afforded the trinuclear complexes of general formula [PtPh{M(CO)3Cp}{μ-P(Ph)N(CH2CH2SR)(PPh2)-κ(3)P,P,S}M(CO)2Cp] (3 M = Mo, R = (CH2)5CH3; 4 M = Mo, R = CH2Ph; 9 M = W, R = (CH2)5CH3; 10 M = W, R = CH2Ph), the structure of which consists of a six-membered platinacycle condensed with a four-membered M-P-N- P cycle, together with small amounts of isomeric PtM2 clusters [PtM2(CO)5Cp2{(Ph2P)2N(CH2CH2SR)-κ(2)P,P}] (5 M = Mo, R = (CH2)5CH3; 6 M = Mo, R = CH2Ph; 11 M = W, R = (CH2)5CH3; 12 M = W, R = CH2Ph) in which the ligand (Ph2P)2NR solely chelates the Pt atom or bridges an M-Pt bond as in [PtM2(CO)5Cp2{μ-(Ph2P)2N(CH2CH2SR)-κ(2)P,P}] (7 M = Mo, R = (CH2)5CH3; 8 M = Mo, R = CH2Ph; 13 M = W, R = (CH2)5CH3; 14 M = W, R = CH2Ph). The synthesis of the trinuclear complexes 3, 4, 9, and 10 entails an unexpected P-phenyl bond cleavage reaction and phenyl migration onto Pt.

View Article and Find Full Text PDF

The reactivity of the dinuclear platinum(III) derivative [(R(F))2Pt(III)(μ-PPh2)2Pt(III)(R(F))2](Pt-Pt) (R(F) = C6F5) (1) toward OH(-), N3(-), and NCO(-) was studied. The coordination of these nucleophiles to a metal center evolves with reductive coupling or reductive elimination between a bridging diphenylphosphanido group and OH(-), N3(-), and NCO(-) or C6F5 groups and formation of P-O, P-N, or P-C bonds. The addition of OH(-) to 1 evolves with a reductive coupling with the incoming ligand, formation of a P-O bond, and the synthesis of [NBu4]2[(R(F))2Pt(II)(μ-OPPh2)(μ-PPh2)Pt(II)(R(F))2] (3).

View Article and Find Full Text PDF