Publications by authors named "Stefano Selci"

The Special Issue on hyperspectral imaging (HSI), entitled "The Future of Hyperspectral Imaging", has published 12 papers. Nine papers are related to specific current research and three more are review contributions: In both cases, the request is to propose those methods or instruments so as to show the future trends of HSI. Some contributions also update specific methodological or mathematical tools.

View Article and Find Full Text PDF

The possibility of detecting and classifying living cells in a label-free and non-invasive manner holds significant theranostic potential. In this work, Hyperspectral Imaging (HSI) has been successfully applied to the analysis of macrophagic polarization, given its central role in several pathological settings, including the regulation of tumour microenvironment. Human monocyte derived macrophages have been investigated using hyperspectral reflectance confocal microscopy, and hyperspectral datasets have been analysed in terms of M1 vs.

View Article and Find Full Text PDF

A hyperspectral reflectance confocal microscope (HSCM) was realized by CNR-ISC (Consiglio Nazionale delle Ricerche-Istituto dei Sistemi Complessi) a few years ago. The instrument and data have been already presented and discussed. The main activity of this HSCM has been within biology, and reflectance data have shown good matching between spectral signatures and the nature or evolution on many types of cells.

View Article and Find Full Text PDF

A novel hyperspectral confocal microscopy method to separate different cell populations in a co-culture model is presented here. The described methodological and instrumental approach allows discrimination of different cell types using a non-invasive, label free method with good accuracy with a single cell resolution. In particular, melanoma cells are discriminated from HaCaT cells by hyperspectral confocal imaging, principal component analysis and optical frequencies signing, as confirmed by fluorescence labelling cross check.

View Article and Find Full Text PDF

A broad range hyper-spectroscopic microscope fed by a supercontinuum laser source and equipped with an almost achromatic optical layout is illustrated with detailed explanations of the design, implementation and data. The real novelty of this instrument, a confocal spectroscopic microscope capable of recording high resolution reflectance data in the VIS-IR spectral range from about 500 nm to 2.5 μm wavelengths, is the possibility of acquiring spectral data at every physical point as defined by lateral coordinates, X and Y, as well as at a depth coordinate, Z, as obtained by the confocal optical sectioning advantage.

View Article and Find Full Text PDF