Publications by authors named "Stefano Percio"

Background: Risk-stratification of patients with retroperitoneal sarcomas (RPS) relies on validated nomograms, such as Sarculator. This retrospective study investigated whether radiomic features extracted from computed tomography (CT) imaging could i) enhance the performance of Sarculator and ii) identify G3 dedifferentiated liposarcoma (DDLPS) or leiomyosarcoma (LMS), which are currently consider in a randomized clinical trial testing neoadjuvant chemotherapy.

Methods: Patients with primary localized RPS treated with curative-intent surgery (2011-2015) and available pre-operative CT imaging were included.

View Article and Find Full Text PDF
Article Synopsis
  • Epithelioid hemangioendothelioma (EHE) is difficult to treat with traditional chemotherapy, prompting researchers to explore new therapies such as sirolimus and identify biomarkers for tumor aggressiveness.
  • Scientists created a patient-derived xenograft (PDX) model from an advanced EHE patient to test sirolimus and to study serum levels of Growth/Differentiation Factor 15 (GDF-15) as a potential biomarker.
  • The results indicated sirolimus was more effective than doxorubicin in reducing tumor growth and GDF-15 levels, establishing GDF-15 as a promising biomarker for EHE aggressiveness and potentially indicating the effectiveness of sirolimus in patients.
View Article and Find Full Text PDF

Background: Cancer-associated fibroblasts (CAFs) play a significant role in fueling prostate cancer (PCa) progression by interacting with tumor cells. A previous gene expression analysis revealed that CAFs up-regulate genes coding for voltage-gated cation channels, as compared to normal prostate fibroblasts (NPFs). In this study, we explored the impact of antiarrhythmic drugs, known cation channel inhibitors, on the activated state of CAFs and their interaction with PCa cells.

View Article and Find Full Text PDF

This study exploited a novel patient-derived xenograft (PDX) of desmoplastic small round cell tumor (DSRCT), which reproduces histomorphological and molecular characteristics of the clinical tumor, to assess the activity of cytotoxic and targeted anticancer agents. Antitumor effect was moderate for doxorubicin, pazopanib and larotrectenib [maximum tumor volume inhibition (max TVI), 55-66%], while trabectedin had higher activity (max TVI, 82%). Vinorelbine, irinotecan and eribulin achieved nearly complete tumor growth inhibition (max TVI, 96-98%), although tumors regrew after the end of treatment.

View Article and Find Full Text PDF

Aside serving as host gene for , transcribes for a chromatin-associated long noncoding RNA (lncRNA) able to restrain the differentiation of prostate basal cells, thus being reannotated as (Long Epithelial -interacting Differentiation-related RNA). We previously showed the presence of sequences in the promoters of genes modulated upon / manipulation. Notably, an element also spans the first and second exons of /, suggesting its possible involvement in target selection/binding.

View Article and Find Full Text PDF

Background: Well-differentiated (WD)/dedifferentiated (DD) liposarcoma (LPS) accounts for ~60% of retroperitoneal sarcomas. WDLPS and DDLPS divergently evolve from a common precursor and are both marked by the amplification of the 12q13-q15 region, leading to the abnormal expression of , , and genes. DDLPS is a non-lipogenic disease associated with aggressive clinical behavior.

View Article and Find Full Text PDF

Diffuse malignant peritoneal mesothelioma (DMPM) is a rare and rapidly lethal tumor, poorly responsive to conventional treatments. In this regards, the identification of molecular alterations underlying DMPM onset and progression might be exploited to develop novel therapeutic strategies. Here, we focused on miR-550a-3p, which we found downregulated in 45 DMPM clinical samples compared to normal tissues and whose expression levels were associated with patient outcome.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is an aggressive disease with limited therapeutic options. Here, we pursued a combinatorial therapeutic approach to enhance the activity of selinexor, the first-in-class XPO1 inhibitor, by miR-34a ectopic expression in human TNBC experimental models. Anti-proliferative activity induced by selinexor and miR-34a expression, singly and in combination, was evaluated by MTS assay and cell counting.

View Article and Find Full Text PDF

Background: Dedifferentiated liposarcoma (DDLPS), a tumor that lacks effective treatment strategies and is associated with poor outcomes, expresses amplified MDM2 in the presence of wild-type p53. MDM2 ubiquitination of p53 facilitates its XPO1-mediated nuclear export, thus limiting p53 tumor suppressor functions. Consequently, nuclear export is a rational target in DDLPS.

View Article and Find Full Text PDF

The oxysterol-binding protein-related proteins (ORPs) have emerged as orchestrators of phosphatidylinositol-4,5-bisphosphate (PIP) and cholesterol trafficking to the plasma membrane (PM). In this scenario, recent studies raised the prospect of ORPs cooperative behavior in sustaining leukemia stem cells (LSCs) survival by remotely enhancing ER-mitochondria Ca communication. At the apex of the signaling cascade, the aberrantly upregulated LSC-ORP4L fosters PM-PIP extraction & cleavage, endoplasmic reticulum (ER)-Ca release and mitochondrial energetics.

View Article and Find Full Text PDF

Speckle-type POZ (pox virus and zinc finger protein) protein (SPOP) is the most commonly mutated gene in prostate cancer (PCa). Recent evidence reports a role of SPOP in DNA damage response (DDR), indicating a possible impact of SPOP deregulation on PCa radiosensitivity. This study aimed to define the role of SPOP deregulation (by gene mutation or knockdown) as a radiosensitizing factor in PCa preclinical models.

View Article and Find Full Text PDF

The development of novel therapies or the improvement of currently used approaches to treat prostate cancer (PCa), the most frequently diagnosed male tumor in developed countries, is an urgent need. In this regard, the functional characterization of microRNAs, molecules shown to regulate a number of cancer-related pathways, is instrumental to their possible clinical exploitation. Here, we demonstrate the tumor-suppressive role of the so far uncharacterized , which we found to be significantly down-modulated in PCa clinical specimens compared to normal tissues.

View Article and Find Full Text PDF

Although the role of 205 has been widely elucidated, the function of its host gene () is yet to be clarified. We have recently investigated whether this gene is a simple endorsement for miRNA production or it may act independently, demonstrating its action as nuclear long noncoding RNA able to control basal-luminal differentiation in the human prostate context, thus deserving the reannotation as , Long Epithelial -interacting Differentiation-related RNA. Here, we describe the loss and gain of function approaches experimentally used to modulate expression, and the bioinformatic procedures employed to analyze microarray data in our published article "LEADeR role of miR-205 host gene as long noncoding RNA in prostate basal cell differentiation" [1].

View Article and Find Full Text PDF

Epithelioid sarcoma (ES) is a rare mesenchymal malignancy marked by SMARCB1/INI1 deficiency. Retrospective clinical data report on the activity of anthracycline- and gemcitabine-based regimens. EZH2 inhibitors are currently being tested in clinical trials.

View Article and Find Full Text PDF

Though miR-205 function has been largely characterized, the nature of its host gene, MIR205HG, is still completely unknown. Here, we show that only lowly expressed alternatively spliced MIR205HG transcripts act as de facto pri-miRNAs, through a process that involves Drosha to prevent unfavorable splicing and directly mediate miR-205 excision. Notably, MIR205HG-specific processed transcripts revealed to be functional per se as nuclear long noncoding RNA capable of regulating differentiation of human prostate basal cells through control of the interferon pathway.

View Article and Find Full Text PDF

Hypoxia inducible transcription factors (HIFs) are the main regulators of adaptive responses to hypoxia and are often activated in solid tumors, but their role in leukemia is less clear. In acute myeloid leukemia (AML), in particular, controversial new findings indicate that HIF-1α can act either as an oncogene or a tumor suppressor gene, and this may depend on the stage of leukemia development and/or the AML sub-type.In this study, we find that HIF-1α promotes leukemia progression in the acute monocytic leukemia sub-type of AML through activation of an invasive phenotype.

View Article and Find Full Text PDF

Background: Acute promyelocytic leukemia (APL) is a sub-type of acute myeloid leukemia (AML) characterized by a block of myeloid differentiation at the promyelocytic stage and the predominant t(15:17) chromosomal translocation. We have previously determined that cells from APL patients show increased expression of genes regulated by hypoxia-inducible transcription factors (HIFs) compared to normal promyelocytes. HIFs regulate crucial aspects of solid tumor progression and are currently being implicated in leukemogenesis.

View Article and Find Full Text PDF

Acute promyelocytic leukemia (APL) is epitomized by the chromosomal translocation t(15;17) and the resulting oncogenic fusion protein PML-RARα. Although acting primarily as a transcriptional repressor, PML-RARα can also exert functions of transcriptional co-activation. Here, we find that PML-RARα stimulates transcription driven by HIF factors, which are critical regulators of adaptive responses to hypoxia and stem cell maintenance.

View Article and Find Full Text PDF