Publications by authors named "Stefano Patassini"

Background: Localized pantothenic acid deficiencies have been observed in several neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease dementia (PDD), and Huntington's disease (HD), indicating downstream energetic pathway perturbations. However, no studies have yet been performed to see whether such deficiencies occur across the dementia with Lewy bodies (DLB) brain, or what the pattern of such dysregulation may be.

Objective: Firstly, this study aimed to quantify pantothenic acid levels across ten regions of the brain in order to determine the localization of any pantothenic acid dysregulation in DLB.

View Article and Find Full Text PDF

Introduction: Several recent studies have uncovered the presence of widespread urea elevations in multiple neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease dementia (PDD), vascular dementia (VaD), and Huntington's disease (HD). However, it is currently unknown whether dementia with Lewy bodies also shows these alterations in urea. This study aimed to investigate if and where urea is perturbed in the DLB brain.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers developed a transgenic sheep model (OVT73) to study HD, which shows early signs of the disease without motor symptoms or cell loss at a young age, aiding in understanding disease onset.
  • * A study of the sheep's brain revealed increased expression of certain receptors and transporters, suggesting that excitotoxicity from glutamate may trigger early neurodegeneration, but protective mechanisms could help buffer against cell damage.
View Article and Find Full Text PDF

Background: Huntington or Huntington's disease (HD) is an autosomal dominant neurodegenerative disease characterised by both progressive motor and cognitive dysfunction; its pathogenic mechanisms remain poorly understood and no treatment can currently slow, stop, or reverse its progression. There is some evidence of metallomic dysfunction in limited regions of the HD brain; we hypothesised that these alterations are more widespread than the current literature suggests and may contribute to pathogenesis in HD.

Methods: We measured the concentrations of eight essential metals (sodium, potassium, magnesium, calcium, iron, zinc, copper, and manganese) and the metalloid selenium across 11 brain regions in nine genetically confirmed, clinically manifest cases of HD and nine controls using inductively-coupled plasma mass spectrometry.

View Article and Find Full Text PDF

Introduction: Vascular dementia (VaD) is one of the most common causes of dementia among the elderly. Despite this, the molecular basis of VaD remains poorly characterized when compared to other age-related dementias. Pervasive cerebral elevations of urea have recently been reported in several dementias; however, a similar analysis was not yet available for VaD.

View Article and Find Full Text PDF

Widespread elevations in brain urea have, in recent years, been reported in certain types of age-related dementia, notably Alzheimer's disease (AD) and Huntington's disease (HD). Urea increases in these diseases are substantive, and approximate in magnitude to levels present in uraemic encephalopathy. In AD and HD, elevated urea levels are widespread, and not only in regions heavily affected by neurodegeneration.

View Article and Find Full Text PDF

Pantothenic acid (vitamin B5) is an essential trace nutrient required for the synthesis of coenzyme A (CoA). It has previously been shown that pantothenic acid is significantly decreased in multiple brain regions in both Alzheimer's disease (ADD) and Huntington's disease (HD). The current investigation aimed to determine whether similar changes are also present in cases of Parkinson's disease dementia (PDD), another age-related neurodegenerative condition, and whether such perturbations might occur in similar regions in these apparently different diseases.

View Article and Find Full Text PDF

Background: The pathological mechanism of cellular dysfunction and death in Huntington's disease (HD) is not well defined. Our transgenic HD sheep model (OVT73) was generated to investigate these mechanisms and for therapeutic testing. One particular cohort of animals has undergone focused investigation resulting in a large interrelated multi-omic dataset, with statistically significant changes observed comparing OVT73 and control 'omic' profiles and reported in literature.

View Article and Find Full Text PDF

Murine models are amongst the most widely used systems to study biology and pathology. Targeted quantitative proteomic analysis is a relatively new tool to interrogate such systems. Recently the need for relative quantification on hundreds to thousands of samples has driven the development of Data Independent Acquisition methods.

View Article and Find Full Text PDF

Several studies of Parkinson's disease (PD) have reported dysregulation of cerebral metals, particularly decreases in copper and increases in iron in substantia nigra (SN). However, few studies have investigated regions outside the SN, fewer have measured levels of multiple metals across different regions within the same brains, and there are no currently-available reports of metal levels in Parkinson's disease dementia (PDD). This study aimed to compare concentrations of nine essential metals across nine different brain regions in cases of PDD and controls.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common cause of age-related neurodegeneration and dementia, and there are no available treatments with proven disease-modifying actions. It is therefore appropriate to study hitherto-unknown aspects of brain structure/function in AD to seek alternative disease-related mechanisms that might be targeted by new therapeutic interventions with disease-modifying actions. During hypothesis-generating metabolomic studies of brain, we identified apparent differences in levels of vitamin B5 between AD cases and controls.

View Article and Find Full Text PDF

Vitamin B5 (d-pantothenic acid; pantothenate) is an essential trace nutrient that functions as the obligate precursor of coenzyme A (CoA), through which it plays key roles in myriad biological processes, including many that regulate carbohydrate, lipid, protein, and nucleic acid metabolism. In the brain, acetyl-CoA is necessary for synthesis of the complex fatty-acyl chains of myelin, and of the neurotransmitter acetylcholine. We recently found that cerebral pantothenate is markedly lowered, averaging ∼55% of control values in cases of Huntington's disease (HD) including those who are pre-symptomatic, and that regions where pantothenate is lowered correspond to those which are more severely damaged.

View Article and Find Full Text PDF

Juvenile myelomonocytic leukemia (JMML) is an aggressive myeloproliferative neoplasm of early childhood with a poor survival rate, thus there is a requirement for improved treatment strategies. Induced pluripotent stem cells offer the ability to model disease and develop new treatment strategies. JMML is frequently associated with mutations in 11.

View Article and Find Full Text PDF

Huntington's disease (HD) is a neurodegenerative disorder caused by an expanded CAG repeat in exon 1 of the gene. HD usually manifests in mid-life with loss of GABAergic projection neurons from the striatum accompanied by progressive atrophy of the putamen followed by other brain regions, but linkages between the genetics and neurodegeneration are not understood. We measured metabolic perturbations in HD-human brain in a case-control study, identifying pervasive lowering of vitamin B5, the obligatory precursor of coenzyme A (CoA) that is essential for normal intermediary metabolism.

View Article and Find Full Text PDF

Breath research has almost invariably focussed on the identification of endogenous volatile organic compounds (VOCs) as disease biomarkers. After five decades, a very limited number of breath tests measuring endogenous VOCs is applied to the clinic. In this perspective article, we explore some of the factors that may have contributed to the current lack of clinical applications of breath endogenous VOCs.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that currently affects 36 million people worldwide with no effective treatment available. Development of AD follows a distinctive pattern in the brain and is poorly modelled in animals. Therefore, it is vital to widen the spatial scope of the study of AD and prioritise the study of human brains.

View Article and Find Full Text PDF

Sporadic Alzheimer's disease (AD) is a neurodegenerative disorder that causes the most prevalent form of age-related dementia but its pathogenesis remains obscure. Altered regulation of metals, particularly pan-cerebral copper deficiency, and more regionally-localized perturbation of other metals, are prominent in AD brain although data on how these CNS perturbations are reflected in the peripheral bloodstream are inconsistent to date. To assess the potential use of metal dysregulation to generate biomarkers in AD, we performed a case-control study of seven essential metals and selenium, measured by inductively coupled plasma mass-spectrometry, in samples from AD and matched control cases.

View Article and Find Full Text PDF

The neurodegenerative disorder Huntington's disease (HD) is typically characterized by extensive loss of striatal neurons and the midlife onset of debilitating and progressive chorea, dementia, and psychological disturbance. HD is caused by a CAG repeat expansion in the () gene, translating to an elongated glutamine tract in the huntingtin protein. The pathogenic mechanism resulting in cell dysfunction and death beyond the causative mutation is not well defined.

View Article and Find Full Text PDF

Datasets comprising simultaneous measurements of many essential metals in Alzheimer's disease (AD) brain are sparse, and available studies are not entirely in agreement. To further elucidate this matter, we employed inductively-coupled-plasma mass spectrometry to measure post-mortem levels of 8 essential metals and selenium, in 7 brain regions from 9 cases with AD (neuropathological severity Braak IV-VI), and 13 controls who had normal ante-mortem mental function and no evidence of brain disease. Of the regions studied, three undergo severe neuronal damage in AD (hippocampus, entorhinal cortex and middle-temporal gyrus); three are less-severely affected (sensory cortex, motor cortex and cingulate gyrus); and one (cerebellum) is relatively spared.

View Article and Find Full Text PDF

Huntington disease is associated with elongation of a CAG repeat in the HTT gene that results in a mutant huntingtin protein. Several studies have implicated N-terminal huntingtin protein fragments in Huntington disease pathogenesis. Ideally, these fragments are studied in human brain tissue.

View Article and Find Full Text PDF

Impairment of brain-glucose uptake and brain-copper regulation occurs in Alzheimer's disease (AD). Here we sought to further elucidate the processes that cause neurodegeneration in AD by measuring levels of metabolites and metals in brain regions that undergo different degrees of damage. We employed mass spectrometry (MS) to measure metabolites and metals in seven post-mortem brain regions of nine AD patients and nine controls, and plasma-glucose and plasma-copper levels in an ante-mortem case-control study.

View Article and Find Full Text PDF

Huntington's disease (HD) is a genetically-mediated neurodegenerative disorder wherein the aetiological defect is a mutation in the Huntington's gene (HTT), which alters the structure of the huntingtin protein (Htt) through lengthening of its polyglutamine tract, thus initiating a cascade that ultimately leads to premature death. However, neurodegeneration typically manifests in HD only in middle age, and mechanisms linking the causative mutation to brain disease are poorly understood. Brain metabolism is severely perturbed in HD, and some studies have indicated a potential role for mutant Htt as a driver of these metabolic aberrations.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is an age-related neurodegenerative disorder that displays pathological characteristics including senile plaques and neurofibrillary tangles. Metabolic defects are also present in AD-brain: for example, signs of deficient cerebral glucose uptake may occur decades before onset of cognitive dysfunction and tissue damage. There have been few systematic studies of the metabolite content of AD human brain, possibly due to scarcity of high-quality brain tissue and/or lack of reliable experimental methodologies.

View Article and Find Full Text PDF

Huntington's disease (HD) is a dominantly inherited, progressive neurodegenerative disorder caused by a CAG repeat expansion within exon 1 of HTT, encoding huntingtin. There are no therapies that can delay the progression of this devastating disease. One feature of HD that may play a critical role in its pathogenesis is metabolic disruption.

View Article and Find Full Text PDF

Huntington's disease (HD) is a neurodegenerative disorder wherein the aetiological defect is a mutation in the Huntington's gene (HTT), which alters the structure of the huntingtin protein through the lengthening of a polyglutamine tract and initiates a cascade that ultimately leads to dementia and premature death. However, neurodegeneration typically manifests in HD only in middle age, and processes linking the causative mutation to brain disease are poorly understood. Here, our objective was to elucidate further the processes that cause neurodegeneration in HD, by measuring levels of metabolites in brain regions known to undergo varying degrees of damage.

View Article and Find Full Text PDF