Recent advances in Global Navigation Satellite System (GNSS) technology have made low-cost sensors available to the mass market, opening up new opportunities for real-time ground deformation and structure monitoring. In this paper, we present a new product developed in this framework by the National Institute of Oceanography and Applied Geophysics-OGS in collaboration with a private company (SoluTOP SAS): a cost-effective, multi-purpose GNSS platform called LZER0, suitable not only for surveying measurements, but also for monitoring tasks. The LZER0 platform is a complete system that includes the GNSS equipment (M8T single-frequency model produced by u-blox) and the web portal where the results are displayed.
View Article and Find Full Text PDFThe Multi-Parameter Wireless Sensing (MPwise) system is an innovative instrumental design that allows different sensor types to be combined with relatively high-performance computing and communications components. These units, which incorporate off-the-shelf components, can undertake complex information integration and processing tasks at the individual unit or node level (when used in a network), allowing the establishment of networks that are linked by advanced, robust and rapid communications routing and network topologies. The system (and its predecessors) was originally designed for earthquake risk mitigation, including earthquake early warning (EEW), rapid response actions, structural health monitoring, and site-effect characterization.
View Article and Find Full Text PDFOver the last few years, the analysis of seismic noise recorded by two dimensional arrays has been confirmed to be capable of deriving the subsoil shear-wave velocity structure down to several hundred meters depth. In fact, using just a few minutes of seismic noise recordings and combining this with the well known horizontal-to-vertical method, it has also been shown that it is possible to investigate the average one dimensional velocity structure below an array of stations in urban areas with a sufficient resolution to depths that would be prohibitive with active source array surveys, while in addition reducing the number of boreholes required to be drilled for site-effect analysis. However, the high cost of standard seismological instrumentation limits the number of sensors generally available for two-dimensional array measurements (i.
View Article and Find Full Text PDF