Sterilization is a prerequisite for biomedical devices before contacting the human body. It guarantees the lack of infection by eliminating microorganisms (i.e.
View Article and Find Full Text PDFIn this study, we report results of the interaction of titanium (Ti) with human synovial fluids. A wide palette of electrochemical techniques was used, including open circuit potential, potentiodynamic methods, and electrochemical impedance. After the electrochemical testing, selected surfaces were analyzed using Auger Electron Spectroscopy to provide laterally resolved information on surface chemistry.
View Article and Find Full Text PDFAdsorption of calf serum organic matter from a phosphate-buffered solution was studied using the electrochemical quartz crystal microbalance with additional dissipation measurements. Two types of crystal surfaces were used: one rough with micrometer-range surface features and one with roughness in the low nanometer range. The results showed that the adsorption of the organic material was about 1.
View Article and Find Full Text PDFModular hip joint implants were introduced in arthroplasty medical procedures because they facilitate the tailoring of patients' anatomy, the use of different materials in one single configuration, as well as medical revision. However, in certain cases, such prostheses may undergo deterioration at the head-neck junctions with negative clinical consequences. Crevice-corrosion is commonly invoked as one of the degradation mechanisms acting at those junctions despite biomedical alloys such as Ti6Al4V and CoCr being considered generally resistant to this form of corrosion.
View Article and Find Full Text PDFUnderstanding the interactions between biomedical alloys and body fluids is of importance for the successful and safe performance of implanted devices. Albumin, as the first protein that comes in contact with an implant surface, can determine the biocompatibility of biomedical alloys. The interaction of albumin with biomedical alloys is a complex process influenced by numerous factors.
View Article and Find Full Text PDFThe electrodeposition of stainless steel-like FeCrNi alloys for miniaturised devices is appealing as it would allow combining excellent material properties ( corrosion resistance, hardness, biocompatibility) at low-cost. However, conventional baths often contain hazardous hexavalent chromium. Cr-based alloys electrodeposited from environmentally friendly trivalent chromium electrolytes are crucial for industrial application for facilitating the transition towards sustainable and ecological production and processing.
View Article and Find Full Text PDFBy designing advantageous cellular geometries and combining the material size effects at the nanometer scale, lightweight hybrid microarchitectured materials with tailored structural properties are achieved. Prior studies reported the mechanical properties of high strength cellular ceramic composites, obtained by atomic layer deposition. However, few studies have examined the properties of similar structures with metal coatings.
View Article and Find Full Text PDFThe mechanical properties of electrodeposited copper with highly-oriented nanoscale twins were investigated by micropillar compression. Uniform nanotwinned copper films with preferred twin orientations, either vertical or horizontal, were obtained by controlling the plating conditions. In addition, an ultrafine grained copper film was synthesized to be used as a reference sample.
View Article and Find Full Text PDF