Publications by authors named "Stefano Marenco"

The mediodorsal thalamus (MD) and adjacent midline nuclei are important for cognition and mental illness, but their cellular composition is not well defined. Using single-nucleus and spatial transcriptomics, we identified a conserved excitatory neuron gradient, with distinct spatial mapping of individual clusters. One end of the gradient was expanded in human MD compared to mice, which may be related to the expansion of granular prefrontal cortex in hominids.

View Article and Find Full Text PDF

Common variants in the MicroRNA 137 host gene MIR137HG and its adjacent gene DPYD have been associated with schizophrenia risk and the latest Psychiatric Genomics Consortium (PGC). Genome-Wide Association Study on schizophrenia has confirmed and extended these findings. To elucidate the association of schizophrenia risk-associated SNPs in this genomic region, we examined the expression of both mature and immature transcripts of the miR-137 host gene (MIR137HG) in the dorsolateral prefrontal cortex (DLPFC) and subgenual anterior cingulate cortex (sgACC) of postmortem brain samples of donors with schizophrenia and psychiatrically-unaffected controls using qPCR and RNA-Seq approaches.

View Article and Find Full Text PDF

The menopausal transition (MT) is associated with an increased risk for many disorders including neurological and mental disorders. Brain imaging studies in living humans show changes in brain metabolism and structure that may contribute to the MT-associated brain disease risk. Although deficits in ovarian hormones have been implicated, cellular and molecular studies of the brain undergoing MT are currently lacking, mostly due to a difficulty in studying MT in postmortem human brain.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how genetic variants in specific brain cell regulatory elements contribute to disease risk by analyzing chromatin accessibility in neurons and non-neurons from human brain samples.
  • Researchers found 34,539 open chromatin areas, with only 10.4% being common between neuron and non-neuron cells, indicating that genetic regulation varies by cell type.
  • By identifying 476 regulatory variants with functional impacts, the research enhances understanding of brain gene regulation and its link to diseases, offering valuable insights into potential therapeutic targets.
View Article and Find Full Text PDF

While epigenetic modifications have been implicated in ADHD through studies of peripheral tissue, to date there has been no examination of the epigenome of the brain in the disorder. To address this gap, we mapped the methylome of the caudate nucleus and anterior cingulate cortex in post-mortem tissue from fifty-eight individuals with or without ADHD. While no single probe showed adjusted significance in differential methylation, several differentially methylated regions emerged.

View Article and Find Full Text PDF

Non-coding variants increase risk of neuropsychiatric disease. However, our understanding of the cell-type specific role of the non-coding genome in disease is incomplete. We performed population scale (N=1,393) chromatin accessibility profiling of neurons and non-neurons from two neocortical brain regions: the anterior cingulate cortex and dorsolateral prefrontal cortex.

View Article and Find Full Text PDF

Non-coding variants increase risk of neuropsychiatric disease. However, our understanding of the cell-type specific role of the non-coding genome in disease is incomplete. We performed population scale (N=1,393) chromatin accessibility profiling of neurons and non-neurons from two neocortical brain regions: the anterior cingulate cortex and dorsolateral prefrontal cortex.

View Article and Find Full Text PDF

Age is a major common risk factor underlying neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Previous studies reported that chronological age correlates with differential gene expression across different brain regions. However, prior datasets have not disambiguated whether expression associations with age are due to changes in cell numbers and/or gene expression per cell.

View Article and Find Full Text PDF

Nucleotide variants in cell type-specific gene regulatory elements in the human brain are major risk factors of human disease. We measured chromatin accessibility in sorted neurons and glia from 1,932 samples of human postmortem brain and identified 34,539 open chromatin regions with chromatin accessibility quantitative trait loci (caQTL). Only 10.

View Article and Find Full Text PDF

Regional cellular heterogeneity is a fundamental feature of the human neocortex; however, details of this heterogeneity are still undefined. We used single-nucleus RNA-sequencing to examine cell-specific transcriptional features in the dorsolateral PFC (DLPFC) and the subgenual anterior cingulate cortex (sgACC), regions implicated in major psychiatric disorders. Droplet-based nuclei-capture and library preparation were performed on replicate samples from 8 male donors without history of psychiatric or neurologic disorder.

View Article and Find Full Text PDF

Recent postmortem transcriptomic studies of schizophrenia (SCZ) have shown hundreds of differentially expressed genes. However, the extent to which these gene expression changes reflect antipsychotic drug (APD) exposure remains uncertain. We compared differential gene expression in the prefrontal cortex of SCZ patients who tested positive for APDs at the time of death with SCZ patients who did not.

View Article and Find Full Text PDF

A new era of human postmortem tissue research has emerged thanks to the development of 'omics technologies that measure genes, proteins, and spatial parameters in unprecedented detail. Also newly possible is the ability to construct polygenic scores, individual-level metrics of genetic risk (also known as polygenic risk scores/PRS), based on genome-wide association studies, GWAS. Here, we report on clinical, educational, and brain gene expression correlates of polygenic scores in ancestrally diverse samples from the Human Brain Collection Core (HBCC).

View Article and Find Full Text PDF

Despite advances in identifying rare and common genetic variants conferring risk for ADHD, the lack of a transcriptomic understanding of cortico-striatal brain circuitry has stymied a molecular mechanistic understanding of this disorder. To address this gap, we mapped the transcriptome of the caudate nucleus and anterior cingulate cortex in post-mortem tissue from 60 individuals with and without ADHD. Significant differential expression of genes was found in the anterior cingulate cortex and, to a lesser extent, the caudate.

View Article and Find Full Text PDF

Chromosomal organization, scaling from the 147-base pair (bp) nucleosome to megabase-ranging domains encompassing multiple transcriptional units, including heritability loci for psychiatric traits, remains largely unexplored in the human brain. In this study, we constructed promoter- and enhancer-enriched nucleosomal histone modification landscapes for adult prefrontal cortex from H3-lysine 27 acetylation and H3-lysine 4 trimethylation profiles, generated from 388 controls and 351 individuals diagnosed with schizophrenia (SCZ) or bipolar disorder (BD) (n = 739). We mapped thousands of cis-regulatory domains (CRDs), revealing fine-grained, 10-10-bp chromosomal organization, firmly integrated into Hi-C topologically associating domain stratification by open/repressive chromosomal environments and nuclear topography.

View Article and Find Full Text PDF

Human insulin () gene diverged from the ancestral genes of invertebrate and mammalian species millions of years ago. We previously found that mouse insulin gene () isoforms are expressed in brain choroid plexus (ChP) epithelium cells, where insulin secretion is regulated by serotonin and not by glucose. We further compared human isoform expression in postmortem ChP and islets of Langerhans.

View Article and Find Full Text PDF
Article Synopsis
  • - The study examines gene expression differences in the subgenual anterior cingulate cortex (sgACC) among individuals with bipolar disorder, schizophrenia, major depression, and healthy controls, using RNA from 200 postmortem donors.
  • - Researchers found that while there were modest expression differences across disorders, case-case comparisons showed greater variations, with some gene transcripts displaying opposing expression patterns between diagnostic groups.
  • - The study highlights that certain rare gene transcripts linked to synapse formation and cell junctions are differentially expressed and suggests that common genetic variants associated with mental illness risk may influence these gene expressions, impacting our understanding of psychiatric diagnoses.
View Article and Find Full Text PDF

Structural variants (SVs) contribute to many disorders, yet, functionally annotating them remains a major challenge. Here, we integrate SVs with RNA-sequencing from human post-mortem brains to quantify their dosage and regulatory effects. We show that genic and regulatory SVs exist at significantly lower frequencies than intergenic SVs.

View Article and Find Full Text PDF

Background: Midbrain dopaminergic neurons (MDN) represent 0.0005% of the brain's neuronal population and mediate cognition, food intake, and metabolism. MDN are also posited to underlay the neurobiological dysfunction of schizophrenia (SCZ), a severe neuropsychiatric disorder that is characterized by psychosis as well as multifactorial medical co-morbidities, including metabolic disease, contributing to markedly increased morbidity and mortality.

View Article and Find Full Text PDF

Schizophrenia and bipolar disorder are serious mental illnesses that affect more than 2% of adults. While large-scale genetics studies have identified genomic regions associated with disease risk, less is known about the molecular mechanisms by which risk alleles with small effects lead to schizophrenia and bipolar disorder. In order to fill this gap between genetics and disease phenotype, we have undertaken a multi-cohort genomics study of postmortem brains from controls, individuals with schizophrenia and bipolar disorder.

View Article and Find Full Text PDF

GABAergic mechanisms have been shown to contribute to cognitive aging in animal models, but there is currently limited in vivo evidence to support this relationship in humans. It is also unclear whether aging is associated with changes in GABA levels measured with proton magnetic resonance spectroscopy (MRS). Spectral-editing MRS at 3 T was used to measure GABA in the dorsal anterior cingulate cortex (dACC) for a large sample of healthy volunteers (N = 229) aged 18-55.

View Article and Find Full Text PDF

Dopamine transporters (DAT) are implicated in the pathogenesis and treatment of attention-deficit hyperactivity disorder (ADHD) and are upregulated by chronic treatment with methylphenidate, commonly prescribed for ADHD. Methylation of the DAT1 gene in brain and blood has been associated with DAT expression in rodents' brains. Here we tested the association between methylation of the DAT1 promoter derived from blood and DAT availability in the striatum of unmedicated ADHD adult participants and in that of healthy age-matched controls (HC) using Positron Emission Tomography (PET) and [ C]cocaine.

View Article and Find Full Text PDF
Article Synopsis
  • - The study highlights how the intra-uterine environment influences the genetic risk of schizophrenia, showing that early-life complications (ELCs) significantly increase the association between genomic risk scores and the disease.
  • - Research conducted in the U.S., Italy, Germany, and Japan found that individuals with ELC histories have much higher polygenic risk scores for schizophrenia compared to those without such histories.
  • - Genes linked to schizophrenia that interact with ELCs are highly expressed in the placenta, with changes noted between complicated and normal pregnancies, and between male and female offspring, suggesting a need to consider developmental responses to environmental stressors in understanding the disorder.
View Article and Find Full Text PDF

Purpose: We hypothesized that osteoarthritis developing after instability surgery is radiographically similar to primary arthritis and that arthroplasty provides comparable outcomes in patients with these two types of osteoarthritis.

Methods: Patients with osteoarthritis due to instability surgery (group I) and with primary osteoarthritis (group II) were included. Mean follow-up was 52.

View Article and Find Full Text PDF

Brain phenotypes showing environmental influence may help clarify unexplained associations between urban exposure and psychiatric risk. Heritable prefrontal fMRI activation during working memory (WM) is such a phenotype. We hypothesized that urban upbringing (childhood urbanicity) would alter this phenotype and interact with dopamine genes that regulate prefrontal function during WM.

View Article and Find Full Text PDF